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The need for risk mitigation on the apron

• All current ATM concepts / ConOps call for significantly improved safety targets 

(e.g. SESAR, ICAO GANP, NextGen) “x10”

• the contribution of airport surface operations to Aviation risk is substantial 

(injuries to human health and damage to material)

• areas affected by surface operations:

• manoeuvring area 

• apron  

Source: Boeing 
Statsum 2017
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Enhancing airport ground surveillance using LiDAR data

Potential risks/capacity backlogs due to:

Sensiive Line-of-sight dependencies of the OTWV,

Lack of precision/accuracy of conventional airport sensors (CCTV),

Challenging weather and lighting conditions  LVOs: CAT III A, B, C,

Degraded situational awareness of the ATCO during these times

LiDAR sensing contributes to a precise and continuous representation of the traffic situation

non-cooperative, wide angles of detection, precision and accuracy 
at millimeter range level (λ vary to suit the target: 
from about 10 micrometers to the UV (approximately 250 nm)), 
no multipath effects, less sensitive to weather and lighting conditions
(but more sensitive to weather than e.g., SMR : λ ca. 0,3 m)

Ø  Raindrop: 0,5 – 1 mm, Fog: 0,001 – 0,005 mm

We need a precise and continuous representation of the traffic situtation on the apron

Visual range < 200mVisual range < 50m
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Enhancing airport ground surveillance using LiDAR data

Vertical accuracy of LiDAR vs. human eye with increasing viewing distance
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Object 
detection, e.g. 

height over 
ground

LiDAR-based airport ground surveillance under varying weather and 
lighting conditions

Validated vertical accuracy of LiDAR measurements for two weather scenarios and two lighting scenarios

Developed probabilistic sensor model that integrates wheather and lighting  foundation for automatic controller 
assistance functions to foster situational awareness of ATCO

Contribution and vision (1)

Height estimates ෠ℎ

3-D point cloud

Weather/lighting-
aware 

probabilistic 
sensor model

Ground truth (GT) heights ℎ

Synthetic ground position
GUI enhanced with automatic

controller 
assistance functions derived 

from sensor model

(Meyer, Fricke et al., 2013, 
Mund, Fricke et al., 2014)

(Mund, Fricke et al. 2015, 2016, current)

LiDAR sensor at DRS 

𝒉

𝒑 𝒉 ෡𝒉

𝒉∗

𝒉∗: most likely height 𝒉 given 

measured height ෡𝒉
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Motivating example

Object on the apron  true height ℎ = 0,5m

CAVOK conditions given: 

Sensor model: ℎ∗= 0,51m  𝑝 ℎ∗ ෠ℎ = 0.99  ok 

CAT III A/B conditions given:  

Sensor model: ℎ∗ = 0,002 m  𝑝 ℎ∗ ෠ℎ = 0.99  Low accuracy 

Goal: Achieve a high quality and weather robust performance):

Sensor model: ℎ∗= 0,53 m  𝑝 ℎ∗ ෠ℎ = 0.99  ok 

LiDAR-based airport ground surveillance under varying weather and 
lighting conditions

Contribution and vision (2)

𝒉

𝒑 𝒉 ෡𝒉

𝒉∗

𝒉∗: most likely height 𝒉 given 

measured height ෡𝒉

𝒉∗ = argmax
ℎ

𝑝 ℎ ෠ℎ

We want to build a sensor model that works as accurate as possible under any given weather condition! 
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LiDAR-based airport ground surveillance under varying weather and 
lighting conditions

Height over ground measure indicates presence of objects on the apron: simple and fast to compute, pose 
(translation, rotation) invariant, reasonably robust to partial occlusions

Varying weather and lighting conditions give rise to different degrees of noise, outliers, non-uniform sampling, 
misalignments in height measurements

Data acquisition

Experimental Setup: Detecting objects on the apron using the height over ground attribute

Data Scenario A Scenario B Sensor 
distance

Set 1 (6 objects, 
10 – 100 cm)

Daylight, Rain Daylight, Clear 25m, 60m, 
95m, 130m

Set 2 (10 objects,
10 – 100 cm)

Daylight, Clear Night, Clear 25m, 60m, 
95m, 130m

Figure: Data set 2, Scenario B (Night, Clear), Sensor distance: 25 m
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Each scenario 𝑤 gives rise to a conditional distribution 𝑝 ℎ, ෠ℎ 𝑤 referred to as height over ground distribution.

LiDAR-based airport ground surveillance under varying weather and 
lighting conditions

Measured object height as a function of the true object height: Data set 1

Left: Scenario A  𝒘 = {Clear, Day} , Right: Scenario B  𝒘 = {Rain, Day}
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Each scenario 𝑤 gives rise to a conditional distribution 𝑝 ℎ, ෠ℎ 𝑤 referred to as height over ground distribution.

LiDAR-based airport ground surveillance under varying weather and 
lighting conditions

Measured object height as a function of the true object height: Data set 2

Left: Scenario A  𝒘 = {Clear, Day} , Right: Scenario B  𝒘 = {Clear, Night}
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LiDAR-based airport ground surveillance under varying weather and 
lighting conditions

Using the height over ground distributions to determine the sensor accuracy (1)

For each height over ground distribution 𝑝 ℎ, ෠ℎ 𝑤 we quantify the sensor accuracy in terms of the error function:

The function 𝐸𝑟𝑟 is also referred to as recognition error. 

Absolute values used to be more robust against measurement outliers!

𝐸𝑟𝑟 =
1

𝑁
σ𝑛=1
𝑁 ℎ𝑛 − ෠ℎ𝑛 , 𝑁: number of 3-D points

True height associated with point 𝑛 Measured height associated with point 𝑛
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LiDAR-based airport ground surveillance under varying weather and 
lighting conditions

Using the height over ground distributions to determine the sensor accuracy (2) 

LiDAR tends to be more robust to varying lighting conditions (right table) in contrast to the investigated variation of 
weather scenarios (left table).

Data Set 1 Clear Rain

Daylight 𝐸𝑟𝑟 = 0.11 m 𝐸𝑟𝑟 = 0.18 m

Data Set 2 Daylight Night

Clear 𝐸𝑟𝑟 = 0.16 m 𝐸𝑟𝑟 = 0.14 m

Two weather scenarios Two lighting scenarios

𝐸𝑟𝑟 =
1

𝑁
σ𝑛=1
𝑁 ℎ𝑛 − ෠ℎ𝑛 , 𝑁: number of 3-D points
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LiDAR-based airport ground surveillance under varying weather and 
lighting conditions

Building a weather/lighting-aware probabilistic sensor model (1)

h

wh
Ground Truth
(GT) height

Measured height

Weather/Lighting

Probabilistic graphical model captures the sensor behavior 

in terms of directed dependencies between the variables ℎ, 

𝑤, ෠ℎ of the underlying joint probability distribution 𝑝(ℎ,𝑤, ෠ℎ).
ሽw ⊂ {𝑐𝑙𝑒𝑎𝑟, 𝑟𝑎𝑖𝑛, 𝑑𝑎𝑦, 𝑛𝑖𝑔ℎ𝑡

We are interested in the conditional distribution 𝒑(𝒉|෡𝒉) over true object heights 𝒉 given measured height ෡𝒉.
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LiDAR-based airport ground surveillance under varying weather and 
lighting conditions

Building a weather/lighting-aware probabilistic sensor model (2)

h

wh
Ground Truth
(GT) height

Measured height

Weather/Lighting

No Weather/Lighting:

𝑝 ℎ ෠ℎ ≈
𝑝 ℎ, ෠ℎ

σℎ′ 𝑝 ℎ′, ෠ℎ

No 

We are interested in the conditional distribution 𝒑(𝒉|෡𝒉) over true object heights 𝒉 given measured height ෡𝒉.

𝑝 ℎ, ෠ℎ = 𝑝 ℎ ෠ℎ 𝑝 ෠ℎ

compute conditional
distribution over the
approximated sum
of the true heights h‘
„Baseline“ 

Learn joint probability
using an Expectation
Maximization (EM) algorithm
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Short Excurse: Probabilistic Sensor Model 

Deriving the conditional probability

Conditional 
probability query 

𝑝 ℎ ෠ℎ =
൯𝑝(ℎ, ෠ℎ

൯𝑝(෠ℎ
=

൯𝑝(ℎ, ෠ℎ

,′𝑝(ℎ׬ ෠ℎ)𝑑ℎ′
≈

𝑝 ℎ, ෠ℎ

σℎ′ 𝑝 ℎ′, ෠ℎ
=

σ𝑤 𝑝 ℎ, ෠ℎ, 𝑤

σ𝑤σℎ′ 𝑝 ℎ′, ෠ℎ
=

σ𝑤 ൯𝑝 ℎ, ෠ℎ|𝑤 𝑝(𝑤

σ𝑤σℎ′ ൯𝑝 ℎ, ෠ℎ|𝑤 𝑝(𝑤

ℎ′Marginalize over true height: න… → ෍… Marginalize over 
(hidden) variable 𝑤

Conditioning on 𝑤

Discrete prior on 𝑤

𝑝 ℎ ෠ℎ
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LiDAR-based airport ground surveillance under varying weather and 
lighting conditions

Building a weather/lighting-aware probabilistic sensor model (3)

h

wh
Ground Truth
(GT) height

Measured height

Weather/Lighting

Weather/Lighting-aware:

No assumptions
on weather/lighting:

𝑝 𝑤 unformly
distributed over all 

sceanrios 𝑤
ሽw ⊂ {𝑐𝑙𝑒𝑎𝑟, 𝑟𝑎𝑖𝑛, 𝑑𝑎𝑦, 𝑛𝑖𝑔ℎ𝑡

𝑝 ℎ ෠ℎ ≈
σ𝑤 𝑝 ℎ, ෠ℎ 𝑤 𝑝 𝑤

σ𝑤σℎ′ 𝑝 ℎ′, ෠ℎ 𝑤 𝑝 𝑤

Height over ground distribution

We are interested in the conditional distribution 𝒑(𝒉|෡𝒉) over true object heights 𝒉 given measured height ෡𝒉.

Weather-aware (two scenarios)
𝑤 = {day, clear}, 𝑤 = {day, rain}

Lighting-aware (two scenarios)
𝑤 = {day, clear}, 𝑤 = {night, clear}

𝑝 𝑤 = 0,5

𝑝 𝑤 = 0,5
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LiDAR-based airport ground surveillance under varying weather and 
lighting conditions

Compare recognition error of weather/lighting-aware model against baseline model over test data

1) Infer most likely height ℎ∗ = argmax
ℎ

𝑝 ℎ ෠ℎ over test data

2) Compute recognition error 𝐸𝑟𝑟 for both models over test data via

a) Weather-aware model achieves a performance improvement of 37% over test data compared to baseline

b) Lighting-aware model peforms similar to baseline over test data

c) Sensor uncertainty less effected by varying lighting conditions vs. varying weather conditions

Performance analysis of the probabilistic sensor model

Recognition error 𝑬𝒓𝒓 Baseline Weather/Lighting-aware

Data Set 1: Day, Clear/Day Rain 𝐸𝑟𝑟 = 0.13 m 𝐸𝑟𝑟 = 0.082 m

Data Set 2: Clear, Day/Clear, Night 𝐸𝑟𝑟 = 0.073 m 𝐸𝑟𝑟 = 0.069 m

𝐸𝑟𝑟 =
1

𝑁
෍

𝑛=1

𝑁

ℎ𝑛
∗ − ෠ℎ𝑛 ,
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LiDAR-based airport ground surveillance under varying weather and 
lighting conditions

1) Specific, parametrized height over ground distribution of objects on the apron under different weather/lighting 
conditions

2) Developed weather/lighting-aware probabilistic sensor model: sensor model tends to be more robust the
simple baseline model

3) Derive automatic controller assistance functions from weather/lighting-aware probabilistic sensor model to 
foster situational awareness of ATCO (e.g., object detected on the apron with 0,1% or 99% probability)

4) Investigate sensor performance under presence of fog: major cause for LVOs

5) Extend / differentiate further operational weather categories („CAT IV“), 

6) Validate range dependencies of height measurements (supposed none so far).

Conclusions and future work


