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Abstract—The on-time performance of passenger trips has 
received a great attention from government agencies in recent 
years but lacks a systematic metric to measure or trace the 
impact of flight delay to air travelers. The proposed model 
considers possible trip types of a passenger, utilizes system-wide 
flight-based performance metrics, and employs statistical 
approaches in order to develop an aggregate delay metric from 
passenger’s perspective. Its results can be used to analyze 
historical passenger schedule reliability and can also be used to 
predict passenger experience for future aviation system. 

Keywords-delay, passenger trip, performance metric, air travel 

I. INTRODUCTION

The on-time performance of flights is a key concern of 
carriers and administrative agencies of aviation worldwide. It 
can be easily quantified for the U.S. National Airspace System 
(NAS) because all flight arrival and departure information is 
well recorded and disclosed by the Federal Aviation 
Administration (FAA). For example, the FAA’s Aviation 
System Performance Metrics database (ASPM) provides 
individual flight information from all participating carriers at 
75 major U.S airports. Arrival delay of flights can thus be 
calculated by comparing scheduled and actual arrival time [10]. 
With suitable aggregation methods, delay metrics at airports or 
at the NAS-wide level can easily be constructed.  

While flight delay statistics are well-recorded and well-
publicized, they are not necessarily an accurate measure of a 
passenger’s level of satisfaction.  In particular, a passenger’s 
average trip delay can vary substantially from average flight 
delay due to trip disruptions due to cancelled flights or missed 
connections. Bratu and Barnhart [1] analyzed proprietary 
airline data and indicated that the average time penalty on 
passenger trip time due to flight cancellations and missed 
connections is 303 minutes, while the average delay for non-
disrupted passengers was only 16 minutes. However, 
acknowledging that passenger delay is also an important factor 

of system performance, it is not easily measurable from any 
publicly accessible data. Since ticket information is not 
released by airlines nor collected by the government due to 
privacy concerns, the delay of multiple-leg passenger trips can 
be traced only with great difficulty. Even through proper 
sampling and survey techniques, passenger delay can only be 
observed during the selected survey period. Considering a long 
term objective of quality assurance of air travel, it would 
appear that there exists a need for defining a passenger oriented 
metric to be used as a quantitative measure of system-wide 
flight delay impact on passenger trips. 

There is limited research that models passenger delay most 
likely because of the relative unavailability of individual 
passenger trip information. The essential challenge is to 
quantify the impact of flight delay on passenger trip disruption. 
Wang [3] treated passenger delay by its causes: delay due to 
delayed flights and due to cancelled flights. To estimate the 
passenger delay from cancelled flights, an algorithm was 
proposed that processed single-segment flight data. The 
underlying idea was to assign cancelled seats to the temporally 
closest available flights. Intuitively, this approach should work 
well in cases where only direct flights are being considered or 
under the assumption that on multi-leg passenger trips, the 
passenger always maintains the same intermediate stopping 
point.  It should also be noted that this research does not model 
the possibility of missed connections on multi-leg flights.   

The common characteristics of our paper and Wang [3] are: 
1) both develop passenger-based performance metrics, and 2) 
both quantify the impact of flight cancellations on passenger 
delays. However, while the Wang model is a detailed 
“microscopic” model that estimates delays at a flight level, our 
model is macroscopic scope, attempting to directly estimate 
overall averages. The FAA’s NAS Strategy Simulator (NSS) is 
a high-level policy analysis tool that predicts the impacts of 
future demand growth, policy changes, increasing fuel price, 
etc. [7]. Our research was specifically aimed at producing a 
performance module for the NSS.  In the NSS context, all input 
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and output data are maintained at an aggregate level and so it is 
assumed that flight-level data are not available.  Likewise, the 
required output should be NAS-wide average flight delay and 
cancellation rates rather than similar flight-specific metrics.   

This paper is organized as follows. In Section 2, the 
concepts of the proposed model are discussed, and statistical 
methods are performed to estimate the probability of missing a 
connection flight. Numerical examples are constructed to 
illustrate the model, and the trend of passenger delay since 
2000 is presented in Section 3. In Section 4, sensitivity analysis 
is conducted by analyzing the impact of key parameters on 
passenger delay. In Section 5, the potential usages and 
limitation of the proposed model are discussed. 

II. MODEL CONSTRUCTION AND ESTIMATION

Passenger delays can be “inherited” directly from delayed 
flights but also can result from cancelled flights. Further, on 
multi-leg passenger trips, long flight delays on the initial leg 
can result in missed connections and induced delays not equal 
to, or even proportional to the original flight delay.  In fact, 
cancellations and missed connections very often result in the 
most severe passenger delays.  With these effects in mind, it 
can be seen that passenger delays depend on: 

• Distribution of flight delays 

• Flight cancellation rate  

• Average load factor  

• Percentage of passengers with 2 or more flight legs in 
their itinerary  

In order to accurately address the actual delay experienced 
by passengers, models and statistical analysis are required that 
transform statistics related to these factors to passenger delay 
measures.  

A. Scenario Tree Model of Passenger Delay 

Our passenger delay model employs in a fundamental way, 
the concept of a disrupted passenger, which was introduced in 
Bratu and Barnhart [1].   A disrupted passenger is a customer 
who must use a flight other than the one on which the customer 
was originally scheduled due to a missed connection or flight 
cancellation.  Disrupted passengers incur delays not related in a 
direct way to the delays on any of the flights in their original 
itinerary. Such passengers might be able to recover quickly, 
e.g. by taking the “next” flight scheduled to the missed 
destination or might incur a very long delay, e.g. requiring an 
unplanned overnight stay.   

In order to model passenger delays, we create a scenario 
tree that represents all possible outcomes of a passenger’s trip. 
The database of Airline Origin and Destination Survey 
(DB1BMarket) contains directional market characteristics of 
each domestic itinerary of the quarterly Origin and Destination 
Survey [11]. The trip leg information of domestic markets from 
2000 to 2007 is summarized in Figure 1, indicating that on 
average over 97% of the passengers chose direct or two-leg 
flights. Thus, because of the relative infrequency of three or 

more leg trips in the U.S., we will represent itineraries as 
consisting of either one or two flight-legs.  

64.6% 63.8% 63.0% 63.3% 65.1% 66.3% 67.6% 67.9%

32.6% 33.5% 34.2% 33.9% 32.3% 31.2% 30.0% 29.7%

2.7% 2.7% 2.8% 2.8% 2.6% 2.4% 2.4% 2.4%

50%

55%

60%

65%

70%

75%

80%

85%

90%

95%

100%

2000 2001 2002 2003 2004 2005 2006 2007
toSep

3+ legs

2 legs

1 leg

Figure 1. BTS Survey Results on Passenger Trip Leg Information 

Our scenario tree is given in Figure 2. It represents the 
various events that can occur on a passenger itinerary, where 
for a 1-leg trip, the flight is denoted by f1 and for a 2-leg trip 
the first flight is f1 and the second is f2. Each leaf of the 
scenario tree represents a different outcome of a passenger trip 
and leads to a different “type” of passenger delay.  

Direct 
Trip  

Two-leg 
Trip

f1 canceled

f1 not canceled

f1 canceled

f1 not canceled Connection 
Missed

Disrupted Passenger

Passenger Delay = Flight Delay

f2 not canceled

Connection
Made

f2 canceled

Figure 2.  Scenarios Tree for a Passenger Trip 

Expected passenger delay could be computed by computing 
the expected passenger delay at each leaf node in this tree and 
the probability of reaching each leaf node.  The sum of the 
product of the leaf node probabilities times their expected 
delays would give the expected passenger delay. This would 
accurately compute expected passenger delay given the 
restriction to one and two leg trips.  This is the approach we 
take; however, we must make several approximations in order 
to estimate the various probabilities and expectations.  We 
hope that over time some of these approximations can be 
improved. 

In computing our estimate of passenger delay, we use the 
following quantities: 

• P_DIRECT: the fraction of passenger itineraries that 
are direct flights 
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• P_CANCEL: the fraction of scheduled flights that are 
canceled  

• F_DELAY: Average flight delay 

• DISRUPT: Average delay of disrupted passengers 

• P_MISS: An estimate of the probability that a 
passenger misses connecting flight (the method for 
computing this estimate is discussed in the next 
section) 

We now list all leaf nodes in the scenario tree, give our 
approximations of the expected passenger delay at that node 
and the probability of reaching that node, and discuss the 
accuracy of these approximations. 

 The various possibilities that can arise are: 

1) Direct Trip, f1 canceled:

Probability estimate: P_DIRECT*P_CANCEL

Delay estimate: DISRUPT

Discussion: The probability estimate is fairly accurate; 
however, P_CANCEL is actually a surrogate for the 
probability that a passenger is booked on a canceled flight.  To 
the extent that there is a greater propensity for airlines to cancel 
flights with fewer passengers, a more accurate estimate could 
be obtained by doing a calculation that weights flights by the 
number of passengers (or seats). In fact there is not source of 
accurate statistics on the delay of disrupted passengers so the 
value we use for DISRUPT is a very rough estimate.  Further, 
models could take into account whether a passenger is 
disrupted by a cancellation or a missed connection.  DISRUPT 
also would be impacted by changes in airline policies and flight 
characteristics, such as load factor, so these could be used in 
improving estimates. 

2) Direct Trip, f1 not canceled:

Probability estimate: P_DIRECT*(1-P_CANCEL)

Delay estimate: F_DELAY

Discussion: Subject to the caveats related to P_CANCEL 
mentioned above, both the probability estimate and the delay 
estimate should be highly accurate in this case. 

3) Two-leg Trip, f1 canceled: 

Probability estimate: (1-P_DIRECT)*P_CANCEL 

Delay estimate: DISRUPT 

Discussion: See discussion for previous two cases. 

4) Two-leg Trip, f1 not canceled, f2 canceled: 

Probability estimate: (1-P_DIRECT)*(1-P_CANCEL)* 
P_CANCEL 

Delay estimate: DISRUPT 

Discussion: See discussion for previous two cases. 

5) Two-leg Trip, f1 not canceled, f2 not canceled, 
connection made: 

Probability estimate: (1-P_DIRECT)*(1-P_CANCEL)*(1-
P_CANCEL)*(1-P_MISS) 

Delay estimate: F_DELAY 

Discussion: As will be discussed later, estimating P_MISS 
can be very challenging. Our approach is to estimate the 
probability that flight delay exceeds a certain (constant) 
threshold. Clearly the required connection time varies 
substantially by flight so in reality the required threshold itself 
is a random variable. Further, it can be the case that both f1 and 
f2 are delayed so that even with a large delay on f1 the 
connection can be made.  Assuming the connection is made the 
passenger delay equals the delay on f2 so that F_DELAY is a 
good estimate of passenger delay in this case. 

6) Two-leg Trip, f1 not canceled, f2 not canceled, 
connection missed: 

Probability estimate: (1-P_DIRECT)*(1-P_CANCEL)*(1-
P_CANCEL)*P_MISS 

Delay estimate: DISRUPT

Discussion: See discussion in previous case regarding 
P_MISS. As discussed earlier it is certainly the case that the 
expected delay experienced by a disrupted passenger could 
vary depending on whether a canceled flight or missed 
connection was involved. 

Based on this scenario tree and the preceding analysis, our 
estimate of average passenger delay, Pax_DELAY can be 
computed as:  

Pax_DELAY = 

(P_DIRECT)*(P_CANCEL)*DISRUPT + 
(P_DIRECT)*(1–P_CANCEL)*F_DELAY+ 
(1–P_DIRECT)*(P_CANCEL)*DISRUPT+ 
(1–P_DIRECT)*(1–P_CANCEL)*(P_CANCEL)*DISRUPT+ 
(1–P_DIRECT)*(1–P_CANCEL)*(1–P_CANCEL)*(1–
P_MISS)*F_DELAY+ 
(1–P_DIRECT)*(1–P_CANCEL)*(1–P_CANCEL) 
*P_MISS*DISRUPT 

B. Probability of Passenger Missing Connection 

Three of the inputs in the Pax_DELAY equation, i.e. 
F_DELAY, P_CANCEL and P_DIRECT, can be easily 
obtained from historical NAS performance statistics. For 
example, the monthly flight arrival delay and cancellation rate 
for the NAS can be calculated from ASPM individual flight 
data; the percentage of direct trips can be estimated from the 
quarterly market survey provided by the Bureau of 
Transportation Statistics, as shown in Figure 1. However, two 
inputs, i.e. DISRUPT and P_MISS, require reasonable 
approximation or further modeling efforts since they are not 
readily available in any data sources or previous research.  

In order to provide a reliable estimate of P_MISS, we 
conduct a statistical analysis on the composition of P_MISS. If 
we denote by Df, the random flight delay, then we define our 
estimate of the probability that a connection is missed because 
of a delayed flight by: 
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 P_MISS = Prob { Df > Threshold } 

where Threshold = LAY – CONNECT, LAY is a nominal 
flight layover time for connecting flights, and CONNECT is an 
estimated minimum time required to connect between two 
flights. 

We assume that schedules are created so that if a flight 
arrives “on-time” then it makes its connection. Here on-time is 
defined relative to the U.S. Department of Transportation 
standard so that a flight is not classified as delayed if it is no 
more than 15 minute late.  Thus, if Df is less than or equal to 15 
minutes, then we assume the passenger makes the connection 
successfully to the second flight leg. The probability of 
passenger missing connecting flight can thus be modeled as a 
conditional probability. Specifically, the probability that the 
connection is missed “given that” the flight is delayed (more 
than 15 minutes) is represented as:  

f

f f

f

Prob { D >Threshold | Flight being Delayed}

Prob { D >Threshold  D >15 }

Prob (D >15)

P_MISS

P_DELAY

∩=

=

where P_DELAY = the probability that a flight’s delay > 15 
=

fProb (D >15) . The probability of missing a connecting flight 

can thus be represented as:  

f fP_MISS = P_DELAY  Prob {D >Threshold | D >15}×

The first term is the probability that a flight is delayed more 
than 15 minutes. The second term is a conditional probability.  
P_DELAY can be estimated directly from flight delay data for 
the purposes of computing a metric.  We also provide a way of 
estimating it using only an estimate of F_DELAY.  This was 
done in order to derive estimates for future years in the context 
of the FAA Strategy Simulator.  Our approach to estimating the 
second term for a time period, e.g. one month, will be to 
estimate the distribution:  Prob{ Df > D | Df > 15} based on 
several years of historical data.  The parameters of this 
distribution will be estimated as a function of F_DELAY and 
P_CANCEL. The value of Threshold and these flight 
performance statistics for the time period in question will be 
plugged into the distribution function to determine the estimate 
of the second term.    

C. Probability of a Flight Being Delayed 

As discussed above, P_DELAY can be computed directly 
from historical data.  However we also provide a way of 
estimating it from flight delay statistic. From the ASPM 
database [10], for each month from January 2000 to December 
2004, we computed the monthly values of F_DELAY and 
P_DELAY.  Due to the obvious non-linearity in distribution 
functions, we postulated a quadratic relationship between 
F_DELAY and P_DELAY.  A simple regression produced the 
following model with an R2 of 0.9628. 

P_DELAY = [ (-0.0206)* (F_DELAY) * (F_DELAY) + 
2.0431 * (F_DELAY) ] / 100 

D. Estimating Conditional  Distribution of Flight Delays 

In this section we describe our approach to estimating the 
conditional distribution function: Prob { Df > D | Df > 15}.  
Individual flight information stored in APSM database was 
used to compute the arrival delay of flights, which is defined as 
the difference between actual and scheduled arrival time. For 
each of month, an empirical distribution of flight delays > 15
was created.  Specifically, each flight delayed over 15 minutes 
was placed into a 15 minute bin (15-30, 30-45, etc.) based on 
its delay value. 

Empirical flight delay distributions were obtained in this 
way for each month from January 2000 to December 2004.  
These distributions were then fitted with the Bi-Weibull 
distribution.  The Bi-Weibull, which is a combination of two 
Weibull distributions, is widely used in reliability applications. 
The Bi-Weibull distribution assumes a different form based on 
its shape parameters, which are: 

• x0 :  the point at which the parameters change, and  

• (α1, β1) and (α2, β2) : the parameters of the two Weibull 
distributions.  

The parameter β2 is a function of the other parameters, so 
there are four parameters in total to be estimated.  

The fitted distributions gave 60 sets of observations of (x0,
α1, β1, α2). A regression was performed on each of these 
parameters, respectively, by using independent variables 
F_DELAY and P_CANCEL. The results from the regression 
are as follows:  

• x0 = 11.1081 + 0.014 * F_DELAY * F_DELAY + 
741.87 * P_CANCEL   (R2 = .93)

• α1 =  0.37 + 0.00083 * F_DELAY * F_DELAY + 3.2* 
P_CANCEL * P_CANCEL + 0.0032 * F_DELAY  (R2

= .87)

• β1 = 11 + 2.83 * F_DELAY + 112.12 * P_CANCEL * 
P_CANCEL  (R2 = .901)

• α2 = 0.1143 + 0.0013 * F_DELAY * F_DELAY + 0.87 
* P_CANCEL * P_CANCEL  (R2 = .82)

Thus, the distribution Prob{Df >D | Df > 15} was estimated 
as a Bi-Weibull distribution whose parameters are given as 
functions of F_DELAY and P_CANCEL. 

III. MODEL APPLICATION AND DATA ANALYSIS

The passenger delay model takes into account several major 
factors that impact passenger delay. Some model inputs are the 
results of aforementioned statistical models; some are available 
from reliable data source or analysis.  

As the market survey results on trip leg information from 
2000 to 2007 shown in Figure 1, it is observed that on average 
two-thirds of the passengers take direct flights. Hence, for 
model application purposes, we set  

P_DIRECT = 66%. 

 Disrupted passengers might be re-assigned to a later flight 
and often experience overnight stays. There are no publicly 
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available data about average delay of disrupted passengers. The 
research results of Bratu and Barnhart [1] based on a 
combination of proprietary data and simulation provide an 
estimate of 303 minutes as the average delay of disrupted 
passengers.  Hence we set 

DISRUPT = 303 minutes. 

The delay threshold of not missing a connection flight is the 
difference between the average flight layover time and 
minimum required connection time. Calculating average 
layover time experienced by a passenger requires detailed 
analysis on either passenger itinerary information or flight 
schedule along with seat information, which are not publicly 
accessible. The minimum required connection time can differ 
among individual airlines or even airports. Therefore, we take a 
conservative estimate on these two inputs based on empirical 
experience and assume that LAY = 45 minutes and CONNECT 
= 15 minutes. Thus, the delay threshold of not missing 
connecting flight is: 

Threshold = LAY – CONNECT = 30 minutes. 

We now have provided models, estimation methods or 
approximation to obtain all required inputs for our metric. We 
use a simple example summarized in Table 1 to show how the 
passenger delay metric is computed. Given that Monthly NAS 
delay is 13.62 minutes and cancellation rate is 3.08%, the 
probability of a flight being delayed as well as the parameters 
of flight delay distribution is determined. The probability of 
flight delay more than connection threshold is computed by 
using the fitted distribution. As a result, the probability of 
missing a connection flight is 0.113, and the estimated monthly 
average passenger trip delay is 35.95 minutes. The relation 
among major model components is shown in Figure 3. 

TABLE I. A NUMERICAL EXAMPLE OF PASSENGER DELAY MODEL

Variable Name Value Source 

Avg Monthly NAS 
Delay of Flights 

13.62 mins. Historical data or estimated 
from other models 

Monthly NAS 
Cancellation Rate 

3.08% Historical data or estimated 
from other models 

P_DIRECT 66% BTS DB1B Database 

DISRUPT 303 mins. Result from Bratu’s study 

Threshold  30 mins. Assumed  

P_DELAY 24% Estimated by this study 

x0 36.55 Estimated by this study 

α1 0.57 Estimated by this study 

α2 0.35 Estimated by this study 

β1 49.65 Estimated by this study 

β2 = x0*β1/(α2 – α1) 22.96 Estimated by this study 

P_MISS 0.1134 Estimated by this study 

Pax_DELAY 35.95 mins. Calculated by using scenario 
tree formula 

Probability of 
Flight Delay 
Longer than 
Threshold 

Monthly NAS 
Flight Delay 

Monthly NAS 
Cancellation Rate 

Other System-wide 
Parameters 

Probability of 
Flights Being 

Delayed 

Flight Delay 
Distribution 

Scenario Tree Formula 

EExxppeecctteedd MMoonntthhllyy
PPaasssseennggeerr DDeellaayy

Probability of 
Missing 

Connection 
Flights 

Figure 3. Application Procedures of Proposed Passenger Delay Model 

Given the application procedures in Figure 3, monthly 
passenger delay metrics from January 2000 to May 2007 are 
computed by using ASPM flight delay and cancellation data. 
Figure 4 shows the time series of monthly passenger delay 
against flight delay and cancellation rate. Most of the spikes of 
passenger delay trend are due to high cancellation rates in those 
months as more passengers are disrupted. This suggests that 
there will be large penalty for passengers in terms of delay-
minutes whenever a flight is cancelled, and also provides an 
explanation for why passenger experience varies from year to 
year as the overall cancellation rates change. 
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Figure 4. Time Series of Passenger Delays 

The comparisons of modeled passenger delay against 
cancellation rate and average flight delay in the NAS are 
plotted in Figures 5 and 6, respectively. It can be also seen that 
as flight delay increases the passenger delay increases in more 
than a linear fashion. This validates our claim that as flight 
delays increase, more passengers are disrupted and the impact 
on passenger delays is much worse than actual flight delays. 
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Figure 6. Monthly Passenger Delays vs. Flight Delays from Jan. 2000 to 
May 2007 (Sept. 2001 is excluded) 

IV. SENSITIVITY ANALYSIS

As one of the modules in a high-level policy analysis tool, 
our model is designed to use flight performance statistics and 
to evaluate the passenger trip experience in response to changes 
in aviation system. The creditability of our model relies on 
proper inputs of parameters, either processed from historical 
data or calibrated from other modeling efforts. To better 
understand how passenger delays correspond to average flight 
delay, sensitivity analysis is conducted by varying the values of 
several key parameters. The parameters of our base scenario 
are summarized in Table 2.  

TABLE II. PARAMTERS OF BASE SCENARIO

Variable Name Value 

P_CANCEL 2% 

P_DIRECT 66% 

DISRUPT 300 mins. 

Threshold  35 mins. 

Figure 7 illustrates the relation between flight delay and 
passenger delay with increasing values of DISRUPT, which is 

the average delay of disrupted passengers. Certainly, 
DISRUPT is the most difficult to estimate input parameter.  
We see that P_DELAY increases with DISRUPT but that the 
sensitivity is fairly modest and the functional relationship 
between F_DELAY and P_DELAY generally retains its 
structure as DISRUPT changes. Figure 8 provides a similar 
sensitivity analysis for P_DIRECT. Note that the nonlinear 
structure of the curves in Figures 7 and 8 results from the fact 
that the probability of missing connections increases more than 
linearly with average flight delay.  
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Figure 8. Sensitivity of Increasing Direct Trip Percentage 

Figure 9 shows the sensitivity of varying the flight 
connection threshold. The choice of Threshold depends on the 
settings of minimum required connection time and average 
flight layover time, which are related to airlines’ behaviors on 
schedule design and fleet management and require further 
exploration. This value is employed in determining the 
probability of missing a connection. The shorter the connection 
threshold, the greater the likelihood a flight is missed. The 
P_DELAY growth rate exhibited in Figure 9 is explained by 
the rather drastic growth rate in the probability of missing a 
connection for F_DELAY over 15 minutes as illustrated in 
Figure 10.  
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The multiplier effect of reducing Threshold on the 
probability of missing connection becomes more significant as 
flight delay increases. When system performance is getting 
worse, stringent connection times will increase the chances of 
missing connections and aggravate passenger trip delay. At 15 
minutes of flight delay, the probability of missing connections 
with Threshold=40 is about 170% of that with Threshold=100. 
At 25 minutes of flight delay, the probability of missing 
connections with Threshold=40 is more than 220% of that with 
Threshold=100.  
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V. CONCLUDING REMARKS

It is generally agreed that flight-based delay metrics are not 
good surrogates of overall passenger experience of air 
transportation system. This study addresses the need for a 
quantitative measure of NAS passenger trip delays. The main 
contribution is that a passenger-based metric is modeled by 
considering a scenario tree for a passenger trip.  This model 
allows the estimation of passenger delay based on existing 
flight-based performance metrics. A drawback of this study as 
well as other comparable research on passenger delays is that 

the results can not be validated because of the unavailability of 
comprehensive passenger trip records. 

The proposed model uses NAS-wide performance metrics, 
i.e. average flight delay and cancellations, in order to measure 
passenger delay from a strategic perspective. The inputs of the 
passenger delay metric are obtained from historical data 
analysis, statistical models, and reasonable approximation. Its 
intention is to provide an efficient but dependable estimate of 
passenger schedule reliability without much effort on analyzing 
detailed flight activities. Using models that forecast NAS-wide 
performance metrics, e.g. the flight delay models in Wieland 
[8] and Subramanian [9] and the cancellation rate model in 
Subramanian [9], the results of this research can also be used to 
predict passenger experience of future aviation system. 
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