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Abstract—This paper describes some methods for filtering and 
aggregating delay data from individual flights.  The purpose for 
these transformations is to make the delay data more consistent 
with the outputs from queuing models.  The transformed data 
can then be used to make much more relevant, and successful, 
comparisons against such models.  This enables better calibration 
of the models, and helps to reveal what fraction of the total delay 
in a system might be generated solely from the consideration of 
congestion resulting from competition amongst aircraft for 
scarce airspace and airport resources.  The paper describes the 
transformations in detail, and demonstrates their theoretical 
validity through examples.  Real data are modified according to 
these transformations and are then compared against a stochastic 
queuing model to show the efficacy of the technique. 

Keywords-queuing models, airport delay, delay filtering 

I. INTRODUCTION 

Queuing models, either deterministic or stochastic, are 
commonly used to predict delay statistics in the National 
Airspace System (NAS). The need for estimating delay is 
great, especially for busy airports. These models are 
particularly useful for studying future conditions that might 
include changes from the demand and capacity profiles 
expected under current operations.  In some cases, such models 
can also be used to predict the effects of important 
infrastructure or policy changes, such as the addition of a 
runway or changing separation standards. 

Queuing models are designed to estimate that component of 
delay that is incurred by aircraft as a result of competition, with 
other aircraft, for a capacitated resource, such as a portion of 
the airspace or a runway. Real delay data at a destination 
airport represent a broader collection of influences, and might 
include, among other things, upstream delays that accrued in 
previous flight legs, delays caused by late arrival of the crew, 
and delays caused by a mechanical problem with an aircraft. 

Queuing models expect, as their inputs, nominal arrival 
times of flights; i.e., those arrival times that would prevail if 
other influences did not create delays.  The differences between 
the nominal (or “desired”) arrival times and the actual arrival 
times are the statistics recorded as delays.  Real demand data, 
in the form of flight schedules, do not represent this notion 

exactly, primarily because air carriers include in their estimates 
of arrival time some expectation of delays.  When executed 
properly, this is a perfectly reasonable practice, because it 
maximizes the likelihood that the actual performance of a flight 
will match the customers’ expectations for that flight.  The 
problem, however, arises when an analyst tries to use the same 
data to populate queuing models, because their intent is to 
estimate those congestion-related delays themselves, rather 
than having them subsumed in the input data source.  In this 
paper we offer a partial solution to this problem, although it is 
our belief that the general question of determining nominal (not 
padded for expected delay) arrival times for aircraft remains 
open. 

 All of the above constitute some of the reasons that the 
process necessary to facilitate proper comparisons of the 
outputs of queuing models with real data can be quite involved.  
Some form of comparison is essential, however, because the 
queuing models require calibration.  It is also important to 
understand, once they are calibrated, that their delay 
predictions represent only a fraction of the total delay that 
might be expected when all of the other influences (which 
might be more difficult to model) are present.  This proportion 
can be estimated as part of the overall calibration process and 
that is a valuable result in and of itself. 

II. APPROACHES FOR MODIFYING DATA

The methods described in this paper for transforming 
individual flight data can be thought of as belonging to two 
classes of operations: filtering and aggregation.  In the former 
case, we are attempting to subtract from real flight delay data 
the best estimates of delay components that are not directly 
attributable to congestion in the queuing sense.  This step 
makes a direct comparison with delay data from queuing 
models much more valid. 

Because the results from queuing models are most often 
shown in aggregate terms (e.g., the average delay incurred by 
all aircraft in the system during a particular time slice), the 
second step is to aggregate the real data, filtered accordingly, in 
a manner consistent with how queuing models tend to report 
their results.  The need for this step is obvious, but its inclusion 
here is important because the paper illustrates how the 
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aggregate delay statistics available in the most common 
aviation databases are not averaged in a manner that allows for 
direct comparison with model results.  Any attempt to make 
such a comparison, therefore, without following steps such as 
those outlined in this paper, is very likely to lead to a poor 
match between model results and real data, leading to the 
possible (and likely erroneous) conclusion that the model is 
doing a bad job or that queuing delays are not a significant 
component of the overall delays incurred by aircraft. 

A. Filtering Schemes 

The basic inputs to a queuing model are demands and 
capacities.  A straightforward (although, we will argue, 
incorrect) method to use real data to feed such a model would 
be to use the collection of scheduled arrival times at an airport 
as the demand and a record of the declared airport arrival rates 
(AARs) as the capacity.  The outputs from the queuing model 
might include average delay per time period, and it might be 
tempting to compare these directly against an aggregate 
average delay statistic in a database such as the FAA Aviation 
System Performance Metrics (ASPM) database, partly because 
the name of the metric is very similar.  Again, this paper offers 
evidence that a more refined method is better for these 
purposes.   

The filtering mechanism encapsulates two basic processes, 
one for the input data for the model, and one for real delay data 
to which output data will be compared.  In the input data, rather 
than using scheduled arrival times directly, we develop a 
scheme for predicting the nominal or “best” arrival time for 
each flight being considered.  Since the queuing model only 
represents congestion effects at the single airport in question, 
data of similar scope must be used for output comparisons.  We 
take individual flight delay data from a real database and 
subtract an estimate of upstream propagated delays that would 
not be accountable for in the queuing models.  These processes  
are described in detail in Section III. 

B. Aggregation Schemes 

When looking at one of the readily available aviation 
performance databases such as ASPM, one can find aggregate 
delay statistics recorded on an hourly (or sometimes quarter 
hourly) basis.  For example, one could find a report of the 
average delay at Atlanta Hartsfield-Jackson International 
Airport (ATL) between 4 pm and 5 pm on some day.  It is not 
clear simply from the title of the field, however, what the 
domain of aggregation is.  In fact, what happens, using the 
above example, is that for all flights that landed at ATL 
between 4 pm and 5 pm, their delays (relative to schedule) 
were computed, and then these were averaged over these 
flights.  A flight scheduled to land at 3 pm but landing at 5 pm 
would be assigned two hours of delay, but both of those hours 
of delay would be aggregated in the time window 4-5 pm, 
when actually only one of them actually occurred during that 
window.  In fact, given the possibility of upstream propagated 
delays, the actual delays might have occurred considerably 
earlier in the day.  This is not a flaw in the reporting 
mechanism, however; the way that ASPM (and other) delays 
are aggregated is simply the easiest and least ambiguous way to 

record the ultimate differences between scheduled and actual 
arrival times. 

The problem comes when trying to compare such data to 
the outputs of queuing models.  In a deterministic queuing 
model, one can track the progress of individual aircraft, so it is 
possible to generate data that are consistent with this reporting 
mechanism.  It is more common with such models, however, to 
use delay accounting practices taken directly from seminal 
sources on deterministic queuing (see for example [1]), where 
delays are accounted for as they occur, rather than after flights 
have landed.  This difference can perhaps best be seen by 
graphical example; we call the mechanism used for reporting 
real data in places like ASPM “horizontal aggregation” and 
that typically used in deterministic queuing “vertical 
aggregation.” 

Importantly, stochastic queuing models (not simulations) 
frequently do not allow for the tracking of individual aircraft.  
Instead, the state space consists of the range of possibilities of 
the length of the queue at any given time, and the differential 
equations of the state dynamics govern how this queue grows 
or shrinks over time.  There is no accounting, however, for 
which particular aircraft are present at any given time.  Thus, 
the horizontal aggregation mechanism is not possible.  The 
vertical aggregation mechanism is possible, and in a stochastic 
model each possible queue length is assigned some probability 
of prevailing at any particular time, so the vertically aggregated 
delay statistic generated represents the expected value of the 
delay incurred by aircraft during that time slice. 

Fig. 1 shows an example of a cumulative demand curve 
(the upper curve, representing the number of flights that 
wanted to land by a particular time) and a cumulative supply 
curve (the lower curve, representing the actual number of 
flights that were allowed to land by a particular time, as 
constrained by the arrival capacity).  The abscissa represents 
time, while the ordinate represents flight count, and the flights 
can be considered to be sorted in order of their desired arrival 
times. 

During the time slice t1 to  t2, flights labeled f1 through f2

landed.  The total delay experienced by these flights over their 
lifetimes can be computed as the area of the horizontal band 
bounded by these two flight labels on the top and bottom, and 
by the two cumulative curves on the left and right.  After 
dividing by the number of aircraft f2 – f1, the result is the 
average delay statistic that would have been reported in a 
database like ASPM.  Because delays for individual flights are 
read from the figure as horizontal spacings between the two 
cumulative curves, we call this form of averaging delay 
“horizontal aggregation.” 

If one looks vertically at the same time slice, however, the 
band between the curves represents the total quantity of delay 
incurred by flights whose desired landing times occurred prior 
to the time slice in question, but whose actual landing times 
occur (or will occur) during or after that time slice.  In this 
case, the total number of flights represented is f3 – f1 and the 
average delay statistic can be computed as the area of the 
vertical band divided by this number of flights.  Again, this is 
the statistic traditionally (but not necessarily) drawn from 
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deterministic queuing models, and necessarily drawn from 
stochastic queuing models. 

It should be clear from the figure that the two quantities can 
be quite different.  Perhaps only a few flights are figured into 
both calculations, and even then the entirety of a flight’s delay 
experience would be horizontally aggregated while only a 
portion of the delay would be captured with vertical 
aggregation during that time slice.  Another way of thinking of 
the two methods is temporally: the horizontal aggregation 
method looks to the past, recording statistics about delays that 
have already occurred, while the vertical method looks to the 
present, by recording delays as they occur, but also to the 
future, because delays components yet to occur for those flights 
will be reported in later time slices.  It is extremely important 
to note that both methods represent the “truth”; neither is more 
or less accurate than the other.  The difference is simply in 
deciding which domain, in terms of time and flight 
identification, will be considered for aggregation and reporting 
during any particular time slice. 

Figure 1. Vertical and horizontal integration of delay 

When considering the specific flight f* shown in Fig. 1, its 
desired landing time was *

dt  and its actual landing time was *
at .

It would have contributed t2 – t1  units of delay to the vertical 
measure of aggregate average delay for that same time slice, 
and other amounts to other time slices.  In the horizontal 
scheme, however, it would only have contributed to the 
measure recorded for the time slice containing time *

at , and the 

amount of delay contribution would have been  * *
a dt t− .

III. DELAY FILTERING

Because of the economic realities of the airline industry, 
individual aircraft are scheduled to operate several flights each 
day with little time between flights.  Thus, if an aircraft suffers 
a delay early in the day, it becomes more likely that later flights 
operated by that same aircraft will also be delayed.  When 
using real delay data to calibrate a queuing model, however, 
these propagated delays must be accounted for. 

In this section, we describe an approach for identifying and 
removing these propagated delays from real delay data.  The 
resulting statistics more clearly represent the queuing delay 
imposed on the aircraft.  Additionally, we propose a technique 
to utilize this filtered data to produce a new “schedule” for each 
aircraft (and hence, for each airport).  These schedules can be 
used as a better proxy for the true demand for resources as 
input to queuing models. 

A. Procedure 

The approach taken in this work and several others (see [2], 
[3]) has been to use individual flight records to trace aircraft by 
their tail numbers as they are routed from airport to airport over 
some period of time.  These series of flights by a single aircraft 
are used to identify and remove propagated delay. 

Thus, the first step in this process is to identify series of 
related flight data.  Initially, data are grouped by tail number 
and sorted by departure day and time.  However, because some 
flight records may be unavailable in the database, it may be 
infeasible to use all records for a single tail number as a single 
series.  This phenomenon is evidenced by an arrival airport not 
matching the subsequent departure airport, indicating a missing 
flight record (e.g. caused by a “ferry” flight or data corruption).  
Data series are also considered broken if more than 24 hours 
elapse between an arrival and subsequent departures.  From 
this procedure come several series of data for each tail number 
being examined. 

Once these series of connected flights have been built, 
propagated delays must be distinguished from “new” delays.  
This process works by determining the best possible departure 
time for a flight, given the delay the previous flight 
experienced prior to its arrival.  The best departure time is 
calculated as the maximum of two quantities: the scheduled 
departure time, or the previous (delayed) arrival time plus some 
minimum turn time, as shown in (2) and (3).  The maximum of 
these two quantities is considered so as to prevent the best 
possible departure time from falling before the scheduled 
departure time.  This would unfairly penalize flights relative to 
their schedule. 

The minimum turn time is calculated in (1) as the minimum 
of the scheduled turn time and some parameter Tturn.  In this 
analysis, only domestic flights were considered.  Because these 
are generally operated by small or medium sized aircraft, the 
minimum turn time parameter Tturn was taken to be 40 minutes.  
An enhancement to be considered for future work using this 
delay filtering algorithm would be to consider variable 
minimum turn times, wherein the parameter might vary based 
upon the aircraft type, length of previous flight, airport in 
question, time of day, or some other factors. 

Once the best departure time has been calculated, the best 
arrival time must be computed.  In this work, the best arrival 
time was taken to be the sum of best departure time and the 
scheduled block time, as shown in (4).  As mentioned 
previously, this block time does not represent the minimum 
time against which a queuing model might compare, as the 
scheduling carrier implicitly accounts for delay when 
scheduling the block time.  However, estimating a true 
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minimum block time for a given flight may be a fairly complex 
endeavor, and as such, has been left for subsequent work. 

Finally, the filtered arrival delay Df,i is computed as the 
maximum of zero and the difference between the best and 
actual arrival times.  It is customary in aviation delay 
calculations to disregard negative delays, and we maintain that 
practice here, particularly because a queuing model would 
never predict negative delays. 

This algorithm is stated below for a series of flights 
1, ,i I= K , given the input data listed previous described. 

Compute minimum turn time:   

( ), , , 1min ,turn i turn sd i sa iT T t t −⎡ ⎤= −
⎣ ⎦ { }2, ,i I∀ ∈ K (1)

Compute best departure time:   

, ,bd i sd it t= 1i = (2)

( ), , , 1 ,max ,bd i sd i aa i turn it t t T−⎡ ⎤= +
⎣ ⎦ { }2, ,i I∀ ∈ K (3)

Compute best arrival time:   

, , ,ba i bd i block it t T= + { }2, ,i I∀ ∈ K (4)

Compute filtered delay:   

( ), , ,max 0,f i aa i ba iD t t= − { }2, ,i I∀ ∈ K (5)

Input data: 
tsd,i: Scheduled departure time for flight i
tsa,i: Scheduled arrival time for flight i
taa,i: Actual arrival time for flight i
Tblock,i: Scheduled block time for flight i

Once the filtered arrival delay Df,i has been computed for 
each flight, these records can be aggregated in either the 
horizontal or vertical methods previously mentioned.  If they 
are aggregated horizontally by airport and time period, they 
will be comparable to those typically reported, but they will 
necessarily be lesser in magnitude.  The case in which they are 
aggregated vertically will be discussed later. 

If the aircraft counts are aggregated by best possible arrival 
time, it is possible to create a new “schedule” which better 
reflects the true demand for operations during that time period, 
from the perspective of the queuing model.  For example, a 
queuing model being applied to ATL does not care if a flight 
had originally intended to arrive at ATL at 5 pm but due to 
delays two flight legs prior to that cannot even depart the 
airport immediately upstream of ATL until 5:30 pm.  The real 
question for the queuing model is, given this penultimate status 
update, what would be the nominal arrival time for the aircraft 
at ATL.  This data can be used as input for a delay prediction 
model to provide a better proxy for demand than the traditional 
schedule would. 

B. Numerical Example 

To illustrate the principles described above, a numerical 
example has been developed.  The aircraft under consideration 
was routed as shown in Fig. 2.  The detailed calculations for 

one flight leg are shown in Table I, while the scheduled and 
actual performance for its entire itinerary are shown in Table II. 

Figure 2. Example case routing 

This aircraft suffers a fairly significant delay of 41 minutes 
on the second flight in this series.  As a result, the best 
departure and arrival times computed for the subsequent flights 
are later than the scheduled ones.  Further, the filtered flight 
delay must then be significantly less than the delay reported by 
traditional metrics. 

To illustrate the steps of the algorithm described above, the 
calculations for the third flight leg (SFO – PHX) are presented 
here in Table I. 

TABLE I. DELAY FILTERING COMPUTATIONS SFO – PHX FLIGHT

Compute minimum turn time:   

( ), min 40, 11: 05 10 :11 40turn iT = − =⎡ ⎤⎣ ⎦

Compute best departure time:   

( ), max 11: 05, 10 : 52 40 11: 32bd it = + =⎡ ⎤⎣ ⎦

Compute best arrival time:   

, 11: 32 113 13 : 25ba it = + =

Compute filtered delay:   

( ), max 0,13 : 27 13 : 25 2f iD = − =

It is interesting to note that the schedule for each of these 
flights allowed for turns longer than the Tturn parameter of 40 
minutes.  As a result, each of the assumed turn times used to 
compute the best possible departure time was smaller than that 
which was scheduled.  It should also be noted, however, that 
the average scheduled turn time was 48.5 minutes, while the 
average performed turn time was 44.3 minutes.  Because of the 
time pressure of the delayed flight, the turns were performed 
faster than scheduled, and more closely matched the 40 minute 
parameter used in the algorithm.   
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TABLE II. DELAY FILTERING EXAMPLE DATA

Schedule Actual Best Delay 
From To 

Turn Dep. Arr. Turn Dep. Arr. Turn Dep. Arr. Reported Filtered 
DEN LAS - 7:10 7:55 - 7:05 7:56 - 7:10 7:55 1 1 
LAS SFO 0:45 8:40 10:11 0:39 8:35 10:52 0:40 8:40 10:11 41 41 
SFO PHX 0:54 11:05 12:58 0:37 11:29 13:27 0:40 11:32 13:25 29 2 
PHX ORD 0:50 13:48 19:14 0:55 14:22 19:36 0:40 14:07 19:33 22 3 
ORD LAS 0:45 19:59 21:49 0:46 20:22 22:10 0:40 20:16 22:06 21 4 

IV. VERTICAL INTEGRATION

There are many ways in which individual flight delays can 
be aggregated.  The most familiar category of metrics involves 
summing delays across flights arriving at a given airport (or set 
of airports) during a particular time period.  However, one must 
be precise when describing exactly which data are summed for 
the given time period. 

In the traditional metrics reported in the ASPM and other 
systems, delays are grouped according to the time at which 
flights arrived.  Regardless of when those delays were accrued, 
they are assigned to the period of arrival under consideration.  
The essence of the vertical integration technique, however, is to 
sum delays that are accrued during a given time period, 
regardless of when the affected flights arrive.  

A. Procedure 

The first part of this procedure is to establish at what time 
delay begins accruing on a flight.  Establishing this baseline 
allows the delay to be assigned to bins beginning at that time.  
This assumption must be carefully examined, lest delay be 
assigned to the incorrect time bins.  In this work, we assume 
that delay begins accruing when the nominal, or best possible, 
arrival time has passed, and the aircraft has not yet arrived at its 
destination.  This best possible arrival could be calculated in 
many ways, depending upon the assumptions about departure 
and flight times that were applied.  Based upon the delay 
filtering analysis presented previously, we will use the best 
possible arrival time calculated as part of that algorithm. 

The first step in calculating these delays is to divide each 
day into a series of time bins, each bounded by some numbers 
tp and tp+1.  Let L and U define the upper and lower bounds for 
the delay accrual period.  In this case, these bounds are the best 
arrival time and the actual arrival time, respectively.  Then, 
find the first bin l into which the flight i contributes delay, as 
shown in (6).  

{ }max | 0pl p L t= − ≥  (6) 

Next, find the last bin u into which the flight i contributes 
delay, as shown in (7). 

{ }max | 0pu p U t= − ≥  (7) 

Then, for each bin { }, ,p l u∈ K , apply the following four 

logical tests to determine the delay accrual Dp,i from flight i
into bin p.   

(a.) IF 1 1& & &p p pL t L t U t L U+ +≥ < < <
  THEN ,p iD U L= −
(b.) ELSE IF 1 1& &p p pL t L t U t+ +≥ < ≥
  THEN , 1p i pD t L+= −
(c.) ELSE IF 1& & &p p pU t U t L t L U+≥ < < <
  THEN ,p i pD U t= −
(d.) ELSE IF 1&p pL t U t +< ≥

  THEN ( ), 1p i p pD t t+= −
The L<U condition is applied to exclude those cases in 

which the flight arrives before its best possible arrival time.  In 
those cases, the new calculated delay would be negative.  We 
treat these cases as having accrued zero delay. 

Fig. 3 illustrates each of these logical tests, and the specific 
case of L and U that they approach.  The hatched area in the 
figure shows the delay accrual period for the flight.  Case (a.) 
applies when both L and U fall in the same time bin.  Case (b.) 
applies when L is in the current bin, but U is in any later one.  
Case (c.) applies when L is in a previous time bin, but U is in 
the current one.  Case (d.) applies when L is in an earlier time 
bin, and U is in a later one. 

(a.) 

tp tp+1L U
(b.) 

L U
…

tp tp+1

(c.) 

L U
…

tp tp+1

(d.) 

L U
… …

tp tp+1

Figure 3. Logical cases for binning delays 

B. Numerical Example 

This algorithm is illustrated here by examining a fictitious 
set of flights shown in Table III, and represented graphically in 
Fig.. 4.  Assume that the delay filtering algorithm previously 
described has been applied to a larger dataset, and that these 
flights destined for ORD were extracted.  The best departure 
and arrival times, as well as the actual arrival times, are shown.  
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The filtered delay is calculated as the difference between the 
best possible and actual arrival times. 

TABLE III. VERTICAL INTEGRATION EXAMPLE DATA

Best  
From To 

Departure Arrival 
Actual
Arrival

Filtered
Delay 

ATL ORD 12:19 1:23 1:38 15 
BWI ORD 12:11 1:26 1:32 6 
LGA ORD 12:05 1:29 1:41 12 
CLT ORD 12:03 1:00 1:21 21 
OKC ORD 12:00 1:15 1:30 15 

ATL

BWI

LGA

CLT

OKC ORD

ORD

ORD

ORD

ORD

12:00
12:15

12:30
12:45

1:00
1:15

1:30
1:45

L U

L U

L U

L U

L U

Figure 4. Vertical integration example data 

As an example, apply the various tests on the first flight 
shown above, that from ATL to ORD.  The first bin l to 
consider is the 1:15 bin, and the last bin u is the 1:30 bin.  Each 
of the logical tests is evaluated for this flight and the results 
shown in Table IV. 

TABLE IV. VERTICAL INTEGRATION COMPUTATIONS FOR ATL – ORD
FLIGHT

1:15 bin 1:30 bin 
Test 

Test Result Dp,i Test Result Dp,i

(a.) FALSE - FALSE - 
(b.) TRUE 7 FALSE - 
(c.) FALSE - TRUE 8 
(d.) FALSE - FALSE - 

Upon evaluating the logical tests for each of these flights, 
the data are summed across time bins, and the results 
summarized in Table V.  As expected, the reported delay 
differs significantly from the delay actually accrued by all 
flights in each period. 

TABLE V. VERTICAL INTEGRATION EXAMPLE SUMMARY STATISTICS

Time period Arrival Count Total Arrival Delay
Begin End Sch. Actual Reported Accrued 
1:00 1:14 1 0 0 15 
1:15 1:29 3 1 21 31 
1:30 1:44 1 4 48 22 

V. RESULTS

The delay filtering and vertical integration algorithms were 
incorporated and applied to a large test dataset to provide 
comparison data for calibrating a queuing model.  Several 
airports were considered. 

A. Delay Models 

For this work, we used a stochastic queuing model with 
non-homogeneous Poisson arrivals and Erlang services times 
(M(t)/Ek(t)/1).  This model is solved analytically using the 
DELAYS software developed at MIT (see [4], [5]).  It is 
specifically designed to estimate the delay incurred by aircraft 
on landing at an individual airport given the capacity and 
demand profiles over specific time periods.  Previous work has 
focused considerable attention on the accuracy of the 
approximation scheme used by this software.  This work will 
demonstrate that DELAYS provides a suitable queuing model 
for airport arrival operations.  

B. Input Data 

The individual flight records were obtained from the 
Bureau of Transportation Statistics (BTS). The BTS database 
includes records for certified US air carriers that account for at 
least one percent of domestic scheduled passenger revenues.   
Other sources of individual flight records could be used as 
well, but the BTS data provides excellent coverage of 
operations at most of the largest airports in the US. 

The Airport Arrival Rates used as capacities for the 
DELAYS model were drawn from the ASPM system.  The 
demands used as input for the DELAYS model were not the 
scheduled demand, but rather were summed using the best 
possible arrival time as the scheduled arrival time. 

C. Case Studies 

Data from numerous airports were examined in this work.  
The results for several are shown here, but others are available 
from the authors. 

The “Reported” category refers to the horizontally 
aggregated data typically reported.  The “Filtered” category 
shows the results of filtering out propagated delays, but 
aggregating in the traditional horizontal manner.  The 
“Filt/Vert” category shows the results of both filtering the data, 
and aggregating it by the period in which it was accrued. 
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1) Atlanta Hartsfield-Jackson International Airport (ATL) 
ATL is a very large and busy airport serving as the hub for 

several carriers.  Demand is frequently at or near capacity. 

Fig. 5 shows results for a sample month during 2004.  The 
first thing to note is that the reported delays are almost always 
higher than all other metrics.  The filtered delays fall slightly 
below the reported delay, but follow the same series of peaks 
and valleys.  Particularly at the end of the day, the gap between 
these two is large, as should be expected.  The vertically 
integrated and filtered data suggest an amount of total delay 
similar to the filtered delay, but have peaks and valleys that 
more closely follow those of the DELAYS series, which are 
nearly almost lower. 
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Figure 5. ATL: February. 2004 

Fig. 6 shows three sets of pairwise correlations, between 
the three delay quantities mentioned above, and the delays 
predicted by the DELAYS queuing model over each month in 
2004.  The correlations between the vertically integrated and 
filtered data and the DELAYS output (the gray bars) were 
uniformly higher than those for all other metrics.  The figure 
only shows results for ATL, but this conclusion held true for 
every airport examined. 

Jan Feb Mar Apr May June July Aug Sept Oct Nov Dec
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Month

C
or

re
la

tio
n 

to
 D

E
LA

Y
S

 o
ut

pu
t

Reported
Filtered
Filt/Vert

Figure 6. ATL 2004: Monthly Correlations 

2) Detroit Metropolitan Wayne County Airport (DTW) 
The results for DTW were fairly similar to those for ATL.  

An interesting feature of the DTW results, which was present 
to a much lesser degree for ATL, is the correspondence of 
peaks and valleys in the monthly data shown in Fig. 7.  The 
peaks for the reported and filtered series correspond quite well, 
as should be expected, because they are both horizontally 
aggregated.  In addition, the peaks for the vertically integrated 
filtered data and the DELAYS model correspond quite well.  
The interesting feature here, however, is that the peaks for the 
first pair of data lag those for the second pair.  This exhibits the 
exact feature espoused earlier in the paper, which is that the 
delay model will show delay as it is accumulated, while the 
reported statistics will show it as the aircraft arrive. 
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Figure 7. DTW: December, 2004 

As was the case for ATL, the correlations between the 
vertically integrated filtered data and the DELAYS outputs are 
uniformly and significantly higher than those of any other 
metric.   This suggests that the proposed methods provide data 
that corresponds better with the DELAYS model output, and 
we would expect this same conclusion to hold for other 
queuing models. 
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Figure 8. DTW 2004: Monthly correlations 
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VI. CONCLUSIONS

Several schemes were presented in this paper to help 
understand the relationship between operational and queuing 
model data in aviation systems.  In their native formats, the 
data have slightly different contextual meanings, and this 
makes direct comparison troublesome.  They can be rectified, 
however, by the methods discussed in the paper. 

The first method discussed for bringing the data sources 
into agreement was the application of filtering techniques.  
These are useful in removing the effects of delay propagated 
between flights using the same aircraft.  This technique 
removed some portion of this delay, and produced data that 
showed a stronger correlation with predicted results. 

The second technique shown in this paper was a different 
scheme of aggregation than is typically used for aviation delay 
data.  The methodology proposed allows for delays to be 
reported in the time bin in which they are accrued, rather than 
the time bin in which the flight arrives.  This technique, 
combined with the first, produced results that show a very 
strong correlation to the predicted delays. 

These two techniques have myriad applications in aviation 
system planning and modeling.  Both are very useful in 
calibrating and understanding delay prediction models.  In 
addition, they encourage the reader to consider the nature of the 
delay reporting mechanisms in use. 
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