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Abstract  Current air traffic forecast methods employed by the 

FAA function under the assumption that the flight route network 

will not change, that is, no new flight routes will be added and no 

existing flight routes will be removed. However, in reality the 

competitive nature of the airline industry is such that new routes 

are routinely added between cities possessing significant 

passenger demand while other city-pairs are removed. This 

paper investigates models for forecasting network 

reconfiguration that exploit knowledge of network structure in 

the Air Transportation System (ATS), with the goal of improving 

overall forecast that drives policy and infrastructure 

enhancement decision-making.  

Keywords-forecast; network theory; air traffic 

I. INTRODUCTION

In order to synthesize long term plans for new technology, 
infrastructure improvements, policy enhancements, and 
regulations for the Air Transportation System (ATS), an 
understanding of air traffic dynamics is needed (i.e., 
determining how, when and where would air traffic arise or 
shift in the future). To meet this need, the FAA Air Traffic 
Organization (ATO) Office of Performance Analysis and 
Strategy (PAS) produces air traffic forecasts to project future 
demand, identify operational shortfalls, determine workforce 
requirements, and estimate the benefits of future investments. 
In the current forecast algorithm, the projected schedules are 
based upon the assumption that the future route network 
structure will be the same as the current network structure. 
That is, no new direct service routes are added between cities 
and, thus, the existing airline hub airports will continue to 
operate as hub airports. 

However, the flight service route network structure is likely 
to change over time. The competitive nature of the airline 
industry is such that new direct routes are routinely added 
between cities with significant passenger demand and routes 
are also removed when demand dwindles. In addition, the 
location and number of airline hubs are not fixed; within the 
past several years, two major hubs have been eliminated (St. 
Louis and Pittsburgh), one airline hub opened and 
subsequently closed (Washington Dulles International 
Airport), and several other hubs were substantially 

restructured. Looking further, scenarios are now taking shape 
in which environmentally-inspired imperatives may 
significantly modify the feasible sets of operations and 
network reconfiguration states. Overall, in order to enhance 
the ATS forecast precision, a better understanding of 
restructuring dynamics is required. Motivated by this goal, 

research described in this paper is focused on investigating 

several models for forecasting the mechanism of network 

restructuring, in particular the aspect of new flight service 
route formation. Families of parameters that describe the 
network topology are used as predictor variables in these 
models. 

The remainder of the paper is organized as follows. After 
an introduction to network theory and some examples of its 
use in previous efforts for analyzing the ATS (Section II), 
Section III describes the data source and assumptions for all 
analysis. Detailed explanation of the three forecast algorithms 
developed up to date, along with key implications will follow 
in Section IV. Section V summarizes the interim results from 
these forecast algorithms. 

II. NETWORK THEORY

A. Background 

Multiple networks subsist in the overall ATS; the primary 
ones are summarized in Table I. The transport network 
topology was analyzed in the present study in which airports 
(nodes) are interconnected by flight routes (links). Modern 
Network Theory (also known as Network Science)1,2 has 
produced powerful results from multiple domains (e.g. 
physics, information, social science, biology) in recent years 
concerning how real world networks evolve. Some researchers 
have begun to explore application for analyzing air 
transportation networks. Guimera et al analyzed the 
worldwide air transportation network topology and computed 
measures which characterized the relative importance of 
cities/airports.3 Bonnefoy and Hansman4 used a plot of the 
weighted degree distribution for light jet operations to 
understand the capability of airports to attract the use of Very 
Light Jets (VLJs). A significant body of work exists in the  
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TABLE I.         MULTIPLE, INTERACTING NETWORKS IN THE ATS 

Network  Node (N) & Link(L) Time Scale 

Demand 
N : Homes/Business 

L : Demand for Trips 
Months/Years 

Mobility 
N : Origin/Destination 
L : Actual PAX trips  

Days/Weeks 

Transport 
N: Airports 

L: Flight Routes 
Days/Weeks 

Operator 
N: Aircraft / Crew 

L: Mission 
Hours 

Infrastructure 
N: Waypoints and Airports 

L: Flight Routes
Months 

TABLE II. DEFINITIONS FOR SELECTED NETWORK MEASURES 

Parameter  Symbol Description 

Node N/A Airport 

Node 

Degree 
ki 

Number of flight routes 

existing at node i 

Node 

Weight 
wi 

Amount of operations 

associated with node i 

Link Weight rij 
Amount of operations 

between node i and j 

Clustering 

Coefficient 
Ci 

Measure of local 

cohesiveness for a node. 

Higher Ci implies that it is 

more likely an alternate 

connection path exists 

when a existing link fails 

Eigenvector 

Centrality 
xi 

A centrality measure of a 

node determined by its own 

and  degree. In 

the transport network, the 

importance of one airport is 

determined not only by its 

own number of routes 

supported, but also the 

number of routes and traffic 

level of airports with which 

it directly connects (an 

airport with high 

eigenvector centrality is 

likely to be very busy itself 

and also connected to other 

busy airports) 

Population* popi 
Population within a 50 mile 

radius of node i 

related domain of operations research on the design of optimal 
networks for particular instances and applications (e.g. 
schedule for an airline). However, these approaches generally 
do not pursue insight into the underlying structure of networks, 

the role this structure plays in future designs, nor the interplay 
between networks from multiple domains. Examination of the 
ATS using network theory at the national level and assessment 
of associated analysis models and techniques as a framework to 
provide both insight into ATS structure and a useful systems 
analysis has been a topic for our work5. The forecast of service 
route restructuring presented in this paper is one example 
application. Table II summarizes key network theory 
parameters that will be discussed and utilized for the remainder 
of this paper. More details can be found in [6].   

The manner in which some of these parameters translate into 
real world performance and operations metrics is also topic of 
ongoing research4 . One example of such a mapping is depicted 
in Eq. (1). This expression is a multivariate regression model 
for predicting the  number of delayed operations for an airport 
using its degree, clustering coefficient, eigenvector centrality, 
degree weight and surrounding population as predictor 
variables. 

   = 0.01928 + 0.147 +

0.02606 + 0.56722 + 0.20758 + 0.07462 .    (1) 

All variables are normalized using the corresponding 
maximum value, and the model produces a good coefficient of 
determination (R2 = 0.95). The graph shown in Figure 1 
displays the comparison between the actual and predicted 
number of delayed operations (for airports that registered at 
least one delay) for the 2004 ATS. A 5% error interval is also 
included. Eigenvector centrality and degree compose the 
majority of the regression model (significantly high F-values 
and Type II Sum of Squares compared to the other variables in 
the model). The number of expected delays can be forecasted 
using Eq. (1), but in order to reduce traffic congestion more 
attention should be placed on airports with not only high 
degree but also higher eigenvector centrality since these two 

Figure 1. Prediction validation for 2004 delayed operations regression model 
(each data point is an airport) 
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variables are anticipated to be the main source of operation 
delays. The primary implication for utilizing network theory 
as an ATS analysis tool, then, is that these measures can be 
efficient indicators of network operational performance. Also, 
focusing on the high-level characteristic of the ATS network 
generates deeper understanding on the nature of the ATS 
without being overwhelmed by its complexity. 

III. DATA SOURCE AND ASSUMPTIONS

The primary research conducted under this study follows a 
similar approach to the delay regression model presented in 
the previous section. The objective is to determine if network 
theory parameters can be utilized to identify unconnected city-
pairs that are most likely to connect in the future. The data 
used for this study was obtained from Air Carrier Statistics 
database family maintained by the U.S. Bureau of 
Transportation Statistics7. In particular, the Form 41 T- 100 
Domestic segment (All US Carriers) database was used to 
construct the network studied. The BTS monitors 2627 total 
airports; however, the ATS network analyzed in this study was 
restricted to airports that had at least one cumulative 
commercial flight since 1990. This criterion reduces the 
network size to 887 nodes (airports). Several different 
measures are available for use in defining a link, such as the 
number of passengers, available seats, flights scheduled or 
actually performed. Since the transport network was explored 
in this research, a link was constituted by performed passenger 
flights per year between airports. Each flight route was 
required to have a minimum of 24 annual flights to be defined 
as a link in order to filter out any spontaneous, irregular flights 

network analysis. To further 
simplify the analysis, the ATS network was assumed to be 
undirected and the number of arrival and departure operations 
were simply added together to compute the wi and rij.

The source of the ATS network evolution can be broken 
down into four basic categories flight route addition due to 
network expansion or reconfiguration, and flight route 
removal due to network contraction or reconfiguration. 
Reconfiguration refers to the - of links within a 

defined set of nodes; no new nodes are added and no pre-
existing nodes are removed to create or destroy a link. 
Network contraction and expansion are opposite to 
reconfiguration, with links either being created by connecting 
to newly developed nodes or removed by detaching nodes 
from an existing set. Figure 2 illustrates the morphing of the 
ATS network categorized in these four evolution sets it can 
be seen that the vast majority of the flight routes removed and 
created are a result of network reconfiguration. Thus, all 
forecast model and results described in the following section 
will only examine the mechanism of flight route construction 
due to reconfiguration. Investigation of the mechanism for the 
other three evolution categories (flight route removal due to 
network contraction / reconfiguration and flight route addition 
due to expansion) can be done relatively easily by supplying 
historical data sets to the algorithm that corresponds to the 
evolution category of interest. 

IV. ROUTE CONSTRUCTION FORECAST ALGORITHMS

Three prototype forecast algorithms were created, 
compared and contrasted a) the logistic regression model, b) 
fitness function model and c) the artificial neural network 
approach. In this paper, the logistic regression model is 
discussed in detail. A brief summary for each approach is 
listed below.

Logistic regression is a statistical method to train a 
probability curve for event occurrence based on historical data 
input. The event for which the occurrence probability is 
calculated will be the construction of a new flight route 
between unconnected city-pairs and the inputs will be the 
parametric characteristics of the flight route. The iteratively-
reweighted least squares (IRLS) method was utilized as the 
algorithm to fit the regression model with historical data.  

Fitness function model is a network growth logic which 
operates under principles of the scale free network model 
where nodes with higher importance, or fitness value, are 
granted a higher probability to construct a new link. The initial 
composition of the function that computes nodal fitness 
projects growth that favors highly connected nodes (a hub-
and-spoke type growth) that is typical in the ATS today. 
However, the fitness function can be modified to investigate 
the efficacy of various types of network growth mechanisms 
corresponding to a mix of different business models.

The Artificial Neural Network (ANN) is composed of a set 
of interconnected neurons that mimic human brain activity in 
attempting to develop optimal input-output mappings for 
prediction. Though some underlying fundamentals are similar 
to logistic regression, the ANN usually has higher precision. 
One drawback is that the relationship between input and 
output remains t it cannot be expressed in 
terms of explicit equations as is typical in conventional 
statistical models. Also, due to the higher computational 
requirements of the ANN algorithm, the network to be 
analyzed via ANN must be kept relatively small. Figure 2. Variation in source of ATS network topology evolution 
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A. Logistic Regression Model 

A new flight route in the network context represents a new 
pathway between unconnected node pairs. The characteristic 
of new routes can be described by observing the traits of the 
airport pairs that create the route. The traits of the airport pair 
can be captured from two perspectives: a) by examining the 
list of parameters for each of the airports and b) by examining 
the relative difference of parameters between the airports. A 
record of network parameters (referred to as [parameter] list)
for each airport involved in a new route indicates the type of 
airports that are most likely to be involved in a new 
connection. On the other hand, a record of parameter 
difference, or deviation, between the airport pairs produces a 
pair-wise measure that may be better able to characterize new 
connection formation. In particular, the type of connection can 
be categorized into either homogenous (connection between 

- -
heterogeneous -

Figure 3. Node weight list distribution for new flight routes established in the 
ATS network between 1990 and 2005

Figure 4. Node weight deviation divergence distribution for new flight routes 
established in the ATS network between 1990 and 2005  

By combining insights from the parameter list and 
parameter deviation traits of the airport pairs that construct a 
new connection, the patterns that facilitate new flight routes 
can be extracted. The histograms in Figure 3 and 4 illustrate 
the distribution of node weight list and deviation for airports 
that formed new flight routes in the ATS network between 
1990 and 2005. Figure 3 shows that most of the nodes 
involved in flight route constructions had relatively low traffic 
(between 1 and 100,000 annual operations), and Figure 4 
shows that the difference (deviation) in the traffic of nodes 
involved in new links was mostly homogenous. The 
implication is that most new flight routes are established 
between airports that have lower traffic. A similar exercise 
was carried out for the remainder of the network parameters 
listed in Table II. 

Parametric data are fed into the logistic regression model 
via design matrix X which ultimately gives node pairs that 
follow such trends higher likelihood of connection. Design 
matrix X is structured as shown in Eq. (2) for which all 
network theory variables in Table II are included, along with 
the distance information between node i and j. The second 
column of X, rij , signifies the occurrence of a new flight route 
construction for node i and j between observation years. If a 
new route is established between i and j ij

1

)(1 ijijiij wkkabskkr
X

(2) 

Based on the design matrix input, the regression model 
computes the variable parameter estimates using the standard 
iteratively-reweighted least squares (IRLS) algorithm and 
feeds the estimates into Eq. (3) which computes the 
probability of an unconnected node pair ij will construct a new 
flight route. 

ijXxijconnect
e

P
,, 21

1 (3) 

X2 in Eq. (2) is a matrix that contains the network parameter 
and parameter deviation information structured identically to X,
except X2 only includes data for unconnected node pairs. The 
design matrix X contains information for all connected and 
non-connected node pairs for probability curve training 
purposes. After Eq. (2) has been computed, Pconnect,ij is 
compared to a random number (rand) between 0 and 1 and the 
algorithm predicts a new flight route construction between 
node i and j if Pconnect,ij  > rand.

B. Accuracy Measures 

Three accuracy measures are employed to assess the 
forecast precision. 

routespredictedofnumbertotal

routespredictedcorrectlyofnumber
Accuracy 1

(3) 
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TABLE III. SUMMARY OF LOGISTIC REGRESSION RESULTS FOR ACCURACY 3

Logistic Regression Results Distribution  
(1990-2005 Cumulative) 

Historical Distribution(1990-2005 Cumulative) 
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routesnewactualofnumber

routespredictedcorrectlyofnumber
Accuracy 2

(4) 

Accuracy 1 shown in Eq. (3) was used to check how many 
new routes the forecast algorithm was predicting in order to 
obtain the correct new route. If the algorithm is predicting 
thousands of new routes to acquire only few correct new 
routes, accuracy 1 will be very low. On the other hand, 
accuracy 2, shown in Eq. (4) simply describes how many of 
the predicted new routes were correct, with respect to the 
number of actual new routes.  

Accuracy 3 is a special type of accuracy measure which 
the coherence in distribution of characteristic trends for new 
links between the data and forecast model is examined. This is 
done by comparing the node parameter list and divergence 
histogram curve from the data and forecast algorithm, such as 
those seen in Figure 3 and Figure 4. The goal of employing 
accuracy 3 is to make sure that the forecast methods are 
predicting the future ATS network in the right direction ; a 
formal equation to describe accuracy 3 currently does not 
exist. 
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TABLE IV. SUMMARY OF LOGISTIC REGRESSION RESULTS

Year
Correctly 
Predicted

Total 
Predictions

Accuracy1 Accuracy 2

1990 N/A N/A N/A N/A
1991 83.7 1217.6 0.0700 0.4314 
1992 88.7 1427.6 0.0624 0.4264 
1993 68.8 1065.1 0.0658 0.4145 
1994 80.0 1365.8 0.0594 0.4645 
1995 146.7 1395.8 0.1077 0.3976 
1996 82.6 1409.8 0.0596 0.4325 
1997 78.2 1489.0 0.0535 0.3476 
1998 62.7 1177.6 0.0552 0.3968 
1999 71.3 1488.4 0.0488 0.4006 
2000 113.6 1980.2 0.0580 0.3381 
2001 52.0 1286.3 0.0410 0.3824 
2002 388.8 2328.9 0.1676 0.2878 
2003 128.2 1123.5 0.1159 0.2728 
2004 120.5 1043.1 0.1157 0.2953 
2005 104.4 1088.1 0.0970 0.2806 

Average       111.3          1392.5          0.0785           0.3713 

C. Logistic Regression Results and Discussion 

Results for an iteration of the logistic regression model are 
shown on Table IV; output for each year is an average over 10 
runs. Inputs to the model consist of all the network theory 
parameters and deviation values for variables listed on Table 
II as well as the distance between airport pairs. Forecasts are 
done on a year-over-year basis; that is, parameters from only 
the previous year are utilized for the forecast. 

number of correctly predicted routes for that year while the 

predicted routes from the forecast algorithm. The logistic 
regression model has relatively high Accuracy 2 but low 
Accuracy 1 across all years, indicating that the algorithm can 
correctly forecast a significant number of new routes but does 
so by forecasting many additional routes in the process. 

Accuracy 3 outcomes for both list and deviation 
distributions for degree and eigenvector centrality are shown 
in Table III. The first important finding was that the 
distributions produced by the logistic regression differ from 
those observed from historical data. In particular, the logistic 
regression allocates too much preference for connection to 
airports and airport pairs with small valued network 
parameters. This result, however, does not mask a second 
important finding from these results: across both parameter list 
and deviation distributions [for nodes with new connections], 

airports, whether defining small by degree or centrality 
significance. Appropriately, the logistic regression model 
distributes higher probability to establish connections between 
t
to these. Owing to the fact that the current ATS network is 
dominated by hub-and-spoke style architectures8, there exist 
many small, spoke airports and very few large, hub airports. 
Since there are more small nodes in the network, many small-

to-small airport pairs arise as candidates for flight route 
construction. Abundant small-to-small airport connection 
candidates coupled with the forecast model favoring small-to-
small airport connections from historical trends results in 
significant number of over-predictions for small-to small 
airport connections. This conclusion is the message conveyed 
from simultaneous consideration of Accuracy 1 and 3 metrics. 

D. Brief Introduction and Analysis of the Artificial Neural 
Network

The Artificial Neural Network (ANN) is composed of a set 
of interconnected neurons that mimic human brain activity. 
Through supervised back-propagation training techniques, an 
ANN is able to achieve desired input-output mapping by 
adjusting the weights associated with each neuronal 
connection in the network. While the basic concept underlying 
ANN is similar to that of the logistic regression, the ANN 
usually has higher accuracy due to its higher degrees of 
freedom. However, the relationship between input and output 
for a trained ANN remains difficult to describe, unlike the 
logistic regression model. Also, the size of the network that 
can be analyzed with an ANN was restricted to a smaller size 
(~250 nodes) than for the logistic regression model due to the 
computational intensity of the ANN training algorithm.  

The ANN approach proceeded via a feed-forward, fully-
connected network algorithm9. After training the ANN with 
historical data, it was used to predict connections between two 
airport nodes. To capture the ATS network dynamics, the 
airport metrics for the previous three years were used at the 
input neuron layer resulting in an input layer of 63 neurons, a 
hidden layer consisting of 126 neurons, and a single output 
neuron. The input neurons represent two airport nodes, the 
hidden layer neurons used a tan-sig activation function, and the 
output neuron used a log-sig activation function. The single 
output neuron indicated the connectivity between the two 

data consisted of 50% of the historical data, while 25% was 
used for testing and 25% for validation. Once again, it should 
be noted that, for research reported here, the ANN was used to 
forecast only a subset of the ATS, mainly due to current 
computational limitations. In particular, historical data from the 
American Airlines (composed of routes operated by American 
Airlines, American Eagle and Executive Airline) and 
Southwest Airlines Transport Networks were employed to 
evaluate the accuracy of the ANN algorithm. 

The trained ANN had extremely high accuracy rates in 
predicting new flight routes, with a minimum value of 70% for 
both Southwest and American Airlines Transport Networks. 
The ATS network used for the ANN forecast algorithm was 
abbreviated to 224 nodes (recalling that the logistic regression 
model considers 887 nodes). The 224 nodes included in the 
ANN training were the most active nodes in the ATS, 
excluding smaller, inactive airport nodes. Results for the two 
airline network forecasts along with translation to Accuracy 1 
and 2 are shown below in Table V and VI.  
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TABLE VII. . SUMMARY OF LOGISTIC REGRESSION RESULTS

Year
Correctly 
Predicted

Total 
Predictions

Accuracy1 Accuracy 2

1990 N/A N/A N/A N/A
1991 36.9 1217.6 0.0700 0.4314 
1992 45.3 1427.6 0.0624 0.4264 
1993 28.5 1065.1 0.0658 0.4145 
1994 31.1 1365.8 0.0594 0.4645 
1995 75.3 1395.8 0.1077 0.3976 
1996 33.6 1409.8 0.0596 0.4325 
1997 46.7 1489.0 0.0535 0.3476 
1998 30.9 1177.6 0.0552 0.3968 
1999 29.8 1488.4 0.0488 0.4006 
2000 51.6 1980.2 0.0580 0.3381 
2001 23.3 1286.3 0.0410 0.3824 
2002 139.5 2328.9 0.1676 0.2875 
2003 54.7 1123.5 0.1159 0.2728 
2004 45.4 1043.1 0.1157 0.2953 
2005 48.1 1088.1 0.0970 0.2806 

Average       111.3           1392.5           0.0785          0.3713 

TABLE V. TRAINED ANN RESULTS (SOUTHWEST AIRLINES NETWORK)

Historical Data 
Connect Disconnect 

Network 
Simulation 

Connect 2850 1104 
Disconnect 738 380706 

Accuracy 1 = 72.08% 
Accuracy 2 = 79.43% 

TABLE VI. TRAINED ANN RESULTS (AMERICAN AIRLINES NETWORK)

Historical Data 
Connect Disconnect 

Network 
Simulation 

Connect 7291 2788 
Disconnect 2962 372357 

Accuracy 1 = 72.33% 
Accuracy 2 = 71.11% 

The results displayed in Tables V and VI are separated into 
four cells. The sum of rows in the table describes the forecast 
results by the ANN, and the sum of columns describes the 
actual status of the unconnected node pairs. For example, in 
the American Airlines results (Table VI), the ANN forecasted 
a total of (7,291+2,788) 10,079 new flight routes (city pairs). 
Out of this total number of predicted new routes, in actuality 
7,291 formed connections as determined from the historical 

Similarly, the ANN forecasted that (2,962+372,357) 375,319 
node pairs would remain disconnected but in actuality 2,962 
out of these 375,319 made a connection. The overall accuracy 
results of the ANN are impressive when compared to the 
logistic regression model; however, it is difficult to extract any 
insights on the ATS evolution mechanism itself, since the 
relationships inside the trained ANN do not relate directly to 
the meaning of the input data (it is just an optimal prediction 
configuration). It is noted here again that the network size was 
significantly reduced in the ANN case. 

E. Brief Introduction and Analysis of the Fitness Function 

Method 

      The fitness function model is a network growth logic 
which operates under the fundamentals of scale-free network 
model8. In this type of growth mechanism and network model, 
nodes with higher importance, or fitness value, are granted a 
higher probability to participate in a new link. The procedure 
begins by reading in the network topology from the previous 
year. For each node in the network, a fitness value was 
calculated through a specific functional composition of several 
nodal metrics listed in Table II. The initial functional 
composition used in the research was simply a ratio of 
individual nodal parameter of airports and the network sum of 
that parameter. For example, if a particular node has k=10 and 
the total k for the entire network is 100, its fitness function 
will be 10/100 = 0.1. This type of fitness function projects 
growth that favors highly connected and important nodes (a 
hub-and-spoke type growth) that is typical in the ATS today. 

     However, the fitness function can be modified to allow 
various types of network growth mechanisms corresponding to 
a different mix of business models that might emerge in the 
future. This ability to tailor scenarios in an explicit manner 
dealing directly with service provider behavior is an attractive 
advantage of this approach. Subsequent to the fitness 
calculation, a pair-wise fitness was calculated for each node 
pair, and this was used to determine a probability of linking 
for all unconnected node pairs in the network. Links are added 
to the topology based on those pairs with high link probability 
(under some randomness). 

    Unlike the logistic regression model and the ANN 
approach, for which historical trends were directly projected to 
forecasting, the fitness function algorithm employs insights 
from growth models developed from the network science 
domain. Various combinations of network parameters 
(summarized in Table II) were investigated for the fitness 
function to determine which combination best suited the 
forecasting task. The fitness function that combines distance, 
degree, eigenvector centrality and nodal weight produced the 
forecast with highest accuracy. Results for an iteration of this 
fitness function model are shown on Table VII, noting once 
again that output for each year is an average over 10 runs. In 
comparison with the logistic regression model, the fitness 
function model produces poor results in the form of Accuracy 

- was not resolved. 

    Surprisingly, however, the fitness function has improved 
Accuracy 3 results especially in the parameter list histograms 
(not displayed). The fitness function seems to develop the 
correct traits for choosing the nodes that develop new routes, 

perhaps due to the large pool of new connection candidates 
(there are approximately 4 million unconnected node pairs to 
choose from!). Even though Accuracy 1 and 2 for the fitness 
function approach may be lower than the ANN or logistic 
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regression, the results appear sensible for an algorithm that 
does not depend on historical trends. This latter fact makes it 
difficult to judge the fitness function model performance 
comparative to the other two models described in this paper 
that purely utilizes historical trends as input. In addition, 
models that are independent of historical trends have an 

likely that the forecast accuracy can be maintained even if the 
characteristic of the ATS is significantly shifted from the 
nature of past trends. The logistic regression and ANN model 
will be able to forecast the ATS at higher accuracy levels if 
and only if the ATS continues to evolve in the direction it has 
been evolving. However, if new policy, technology or 
operation methods that revolutionizes the ATS are introduced, 
the logistic and ANN will require new historical data to 
accumulate before further accurate forecast can be made. With 
algorithms like the fitness function model, change in ATS 
characteristics can be readily introduced by appropriately 
adjusting the fitness function calculation. Combinations of the 
models, therefore, also seem like a promising avenue for 
further research. 

V. CONCLUSION AND FUTURE WORK

Current air traffic forecast methods employed at the FAA 
function under the assumption that the flight route network 
will not change, that is, no new flight routes will be added and 
no existing flight routes will be removed. In reality, the 
competitive nature of the airline industry and the potential 
need for new policies relating to the environment are such that 
new routes are routinely added between cities possessing 
significant passenger demand and other city-pairs are 
removed. 

     Research performed under this project and described in this 
paper explored means to understand network reconfiguration 
dynamics in the ATS. In particular, the aim was to expand the 
capabilities of the existing ATS forecast methods developed 
by the FAA, ultimately leading to improved decision-support 
in maintaining and enhancing the ATS. Employing network 
theory variables and concepts as a foundation to characterize 
the network of flight service routes in the ATS, three families 
of models were developed and tested: a) Logistic regression, 
b) a network topology based fitness function method, and c) 
an artificial neural network (ANN) algorithm. Results indicate 
that each has merit under differing accuracy metrics and each 
has methodological drawbacks. Advantages and disadvantages 
were documented. Overall, the logistic regression appears to 
capture more likely new city pairs, though in an inefficient 
manner as compared to the fitness function model. The ANN 
has superb prediction capabilities but was only tested on a 
sub-set of the network data due to computational and time 
constraints of this short duration study. 

     There still is much room for expansion in the current ATS 
forecast capabilities described in this paper. First, means are 

available to increase all accuracy measures for each forecast 
algorithm. Some proposed methods to meet this goal include 
the implementation of more accurate and precise data of the 
ATS (i.e. ETMS instead of BTS), parsing the ATS network 
into sub-networks such as specific aircraft class or service 
provider, and removing variables deemed insignificant to the 
model or causing high multicollinearity. Forecasting based on 
multiple previous years for the logistic regression and fitness 
function model may also increase accuracy. Eventually, 
multiple forecast methods may be merged to go beyond the 
limit of individual methods. Second, enhanced ability to 
implement future scenarios will greatly improve the value of 
this research. All forecast methods are essentially based under 
an assumption in which the future ATS will grow in the way it 
has in the past. However, this is not true. New types of airline 
services, emergence of innovative technologies as well as new 
regulations and policies will impact the future state of network 
configurations; each of these may also drastically change the 
fundamental principles of operation of the ATS. In order to 
anticipate the effect for some of these ground-breaking factors 
in the forecast algorithms, a better understanding and mapping 
of the ATS is required. Finally, combining the best of the 

current forecast method (based largely on the FRATAR 
algorithm) constitutes the most immediate next step. 
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