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Abstract—We analyze how large gaps between the planned
and realized number of aircraft into flight sectors propagate
through the European- and the Japanese Airspace. For this we
analyze the sample cross-correlation matrix of the most congested
part of the networks. Because of the motion of aircraft, gaps
propagate to neighboring sectors, expecting positive correlation
coefficients. The question in the analysis is whether there are
unexpected coefficients. Such coefficients would be caused by
traffic controllers or flow managers who compensate for strong
gaps by re-routings or speed adjustments. Such strategies would
often lead to negative correlation coefficients. Our results show
that meaningful correlations appear on two levels: (i) locally,
that is between a sector and its direct neighbors and (ii) globally
on ‘traffic highways’, that is between sectors that are connected
through a flight route with high traffic densities. This is true
for both, the European- and the Japanese Airspace. Moreover,
all correlations are positive and their time-lags correspond to
the average travel times. No unexpected correlations have been
found. We conclude that no systematic strategies to compensate
strong delays are applied by controllers. The results are useful
to justify predictive congestion models for future flow planning.
They also give a first insight into how controllers deal with their
workload, although a more detailed analysis is required to explore
this topic.

Index Terms—Flow analysis, correlation analysis

I. INTRODUCTION

Airspace is divided into geographical regions, called sectors.

A flight plan is a sequence (S1, t1), ..., (Sn, tn) of sectors

Si and entry times ti in the sector. Due to uncertainties

(weather conditions, congestion etc.), aircraft can deviate from

their flight plans. [BLHM05] classify the major sources of

uncertainty as

• Demand uncertainty: flights fail to meet planned depar-

ture, arrival or en-route travel times. Contributing factors

are mechanical problems, boarding passengers or weather

conditions.

• Capacity uncertainty: airport and airspace throughput

levels vary. Contributing factors are weather conditions

and changes in flight sequences that disturb scheduled

departure or arrival spacing.

• Flow control uncertainty: actions are taken by the traf-

fic controllers in response to demand and capacity un-

certainty. Examples are re-routing, re-sectorization and

temporary capacity limitations. The human element of

decision making adds another layer of uncertainty to the

whole system.

Deviations from flight plans lead to gaps between the planned

and the real number of aircraft entering flight sectors. For

example in the year 2004, 17.7 % of European flights

departed- and 18.5 % arrived more than 15 min behind their

schedule [EUR06].

Obviously, a gap between planned and real number

of entries in a sector S in time slot t propagates to its

neighboring sectors in slot t+1, because aircraft cannot stand

still. On the other hand, pilots and air traffic controllers can

compensate gaps by re-routing or speed adjustments of all

aircraft.

In this article we analyze past flight data to see how such

gaps propagate in reality through the airspace. Are there

strategies of controllers to compensate the gaps successfully?

We will look at (i) local propagation, that is propagation

between a sector and its direct neighborhood and (ii) global

propagation, i.e. between a sector and any other sector in

the system. Based on such knowledge flow planning can be

improved, because systematic gaps can be controlled, once

their mechanisms are understood.

The article is divided into two parts and a conclusion: in

the first part we explain the method and give some examples

from literature. In the second part we report our results. We

conclude with a critical comment and motivate future work.

II. METHOD AND RELATED WORK

We consider Zt = [Z1t, Z2t, ..., Zmt]
′, t, Zit ∈ Z as a

random process where Zit represents the gaps between

planned and realized number of aircraft entering sector i
in time slot t. Our aim is to study the correlation structure

of the process. Positive correlation between two sectors i
and j in time slots t1 and t2 has the meaning that gaps

above average in sector i and slot t1 are associated with

gaps above average in sector j and slot t2. As mentioned

above, we expect such correlations between neighboring

sectors. But we are more interested in unexpected correlations

in the real traffic data. For example, take a sector with a
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crossing of two routes. When a traffic peak on the first route

is predicted to arrive at the sector some time ahead, the

controllers could coordinate with sectors on the second route

to re-route aircraft for compensation. Such a strategy would

cause negative correlation between the sectors along the two

routes. Likewise, vanishing correlation between two sectors,

when conditioned on the value of other sectors, might help

reveal network effects.

Related work from the ATM domain can be found in the

analysis of flight data on a sector level: [WCGM03] and

[WSZ+05] analyze uncertainties in sector demand. One of

their observations is that flow control actions against con-

gestion are visible in the data, in cases that the predicted

peak counts are greater than some alert value displayed in the

Enhanced Traffic Management System (ETMS). [RSWB06]

analyze radar data to identify traffic flows in the U.S. airspace.

They define a flow as a cluster of aircraft with similar

trajectory properties. A trajectory is a high-dimensional vector

of geographical components. They apply several clustering

techniques to the data. But even after enhancing the data set

with additional features (e.g. aircraft type), they conclude that

none of the algorithms provides satisfactory results for practi-

cal purposes. A correlation analysis of sector data, as proposed

in our article, has not been identified in literature review. This

might be due to the known difficulties in the interpretation

of auto- and cross correlation coefficients [Ken89], [Dig90].

On the other hand, correlation analysis is the first step in

an analysis of multiple time series, as for example applied

to highway traffic prediction in [KP03]. In what follows, we

analyze the risk of misleading coefficients in our data before

visualizing the most interesting correlation patterns. This is

exploratory work with the aim to generate new hypotheses

about the phenomenon.

A. Inference for cross-correlation matrices

In this part we define the sample correlation matrix func-

tion between multiple time series and derive bounds for the

variability of its coefficients.

1) Estimation: We use the standard estimators of lag-k
crosscorrelation

ρ̂ij(k) =
γ̂ij(k)

[γ̂ii(0)γ̂jj(0)]1/2

with sample crosscovariance elements

γ̂ij(k) =
1

n − k

n−k∑
t=1

(Zit − Z̄i)(Zj,t+k − Z̄j)

where

Z̄i =
1

n

n∑
t=1

Zit

are the component-wise sample means of an observation

consisting of n time slots.

These estimators are asymptotically normally distributed

[Ken89]. Modifications exist to address issues of bias and
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Figure 1. Histogram of estimated correlation coefficients. Bold: empirical
distribution. Blue: empirical null distribution. Triangles: local false discovery
rate. Data: Japanese Airspace.

high-dimensionality [Ken89], [LW04] and [SS05]. A disad-

vantage of the latter approaches is that the sample properties

of their estimators are not known. Note also that the matrices

do not have to be invertible for our study.

2) Sample Variability: Our objective is to decide whether

the coefficients of the correlation matrix differ significantly

from 0. For this, the variance of the sample correlations has

to be known. For a large number n of independent observations

the variance of a single sample correlation coefficient under

the hypothesis that the true correlation is 0 is 1

n−1
[Sap06].

There are two reasons why this result cannot be used directly

in our analysis: (i) our observations are not independent and

(ii) there is a large number of hypotheses to be evaluated.

a) Bartlett: When observations are dependent, a result

from Bartlett gives insight into the problem [KSO83]. It shows

that when the stationary series Zi(t), Zj(t) are uncorrelated

and estimated from a single realization

V [ρ̂ij(k)] =
1

n − k

∞∑
s=−∞

ρii(s)ρjj(s) (1)

This means that even for large n, the variance of the

sample correlations depends on all correlations of the original

processes, which are generally unknown. Consequences are (i)

a risk of ‘spurious’ correlations and (ii) that it is impossible

to estimate these quantities directly from a finite sample.

In practice, approximations are often used, for example by

assuming that the individual series correspond to white noise

(for example after pre-whitening).
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Figure 2. Airspaces. Left: European Central Airspace. Right: Japanese Airspace.
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ρmax

0.01 0.05 0.1 0.2

10 1.002 1.05 1.20 1.8
75 1.015 1.375 2.50 7.0

100 1.02 1.50 3.00 9.0
150 1.03 1.75 4.00 13.0

Table I
VARIANCE INFLATION AS A FUNCTION OF SERIAL CORRELATION

To characterize the risk of spurious correlation in our

instance, we calculate the variance inflation for several depen-

dency structures compared to independent observations due

to Bartlett’s formula. Looking ahead to Figure 4 we used

scenarios with a low amount of constant dependency ρmax

up to time-slot lmax in order to obtain upper bounds for the

inflation. The dependency structures are the following:

ρii(s) = ρjj(s) =

{
ρmax s < lmax

0 else

Under this structure, equation 1 becomes

V (ρ̂ij(k)) <
1

n − k

∞∑
s=−∞

ρ2
ii(s) =

1

n − k
(1 + 2lmaxρ2

max)

Table I shows nV (ρ̂ij(1)) for different values of ρmax and

lmax: For example, for a correlation of ρmax = 0.1 up to lag

lmax = 10, an inflation of 20% would occur. For stronger

correlations, an explosion of the variance can be seen (bottom

right part of the table). Again, looking ahead to Figure 4,

we expect weak correlations in our series. We can expect

30 - 70 % increase of variance with respect to independent

realizations.

b) False discovery rates: The second problem is that of

the large number of coefficients to be evaluated. Classical

hypothesis tests would expect a large number of rejections

by their very nature [Efr04]. [ETST01] proposes a heuristic

method to identify a number of ‘interesting’ coefficients in

large-scale testing contexts. They define the local false dis-

covery rate

fdr(ρ̂) ≡ f0(ρ̂)/f(ρ̂)

where f0(ρ̂) is the density of uninteresting coefficients and

f(ρ̂) the density of all coefficients. fdr is the expected

proportion of of null coefficients in a selection of coefficients

with value ρ̂. Interesting coefficients are those with

fdr(ρ̂) < c, a threshold value, comparable in meaning

with the significance level of classical tests.

Figure 1 shows the histogram of all 21*21*30 = 13230

cross-correlation coefficients in our matrix for the Japanese

Airspace (please see below for details on the selection of the

21 sectors). It has been estimated from 11 days of data, each

consisting of 288 observation intervals. The bold line (green)

is the empirical distribution, fitted by a polynomial of degree

3. The dotted blue line is the empirical null distribution,

fitted by Efron’s method. It is a normal distribution with

unknown variance. Both distributions look almost identical;

small differences can be seen at the peak and ρ̂ ∼ 0.1.

The triangles mark the interval, outside which the computed

fdr < 0.2. Finally, the pink bars represent the estimated

mass of non-null coefficients. The majority of their mass lies

inside the fdr interval. We obtain three results: (i), correlation

coefficients above 0.12 can be regarded as interesting, (ii), the

standard deviation of the empirical null distribution is 0.033,

which is ≈ 86% larger than the null variance for independent

observations (for 11 days, each 288 observations). This is in

agreement with the results from the previous paragraph. And

(iii), a risk that interesting coefficients will be undetected

exists.

To summarize, we analyzed how dependent observations
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and a large number of variables affect statistical methods to

infer significant correlation coefficients. The first approach

showed that a variance inflation has to be expected and the

second that there is risk of leaving interesting coefficients

undetected. Both methods suggest a rather small critical value

for interesting coefficients. At this point we remind that we

wish to explore meaningful patterns of correlation rather than

single coefficients. Subjective judgement may prove useful in

this task.

III. RESULTS

We analyzed correlations in the European and in the

Japanese airspace. The left part of Figure 2 shows the most

congested part of the European Airspace. It comprises 31

sectors covering London, Zurich and Berlin, belonging to 9

control centers. The daily number of aircraft is about 8000

for this area. The yellow routes are from North to South and

the brown ones from South to North. Between London and

Frankfurt, one can see a bi-directional high density route.

The Japanese airspace can be seen in the right part of Figure

2. Our area of interest contains 21 sectors, covering Fukuoka

(south), Tokyo (center) and Sapporo (north). These sectors

belong to 3 control centers. For these sectors, more than

85 % of the entry-times of the aircraft could be determined

accurately. About 4000 aircraft use this part of the airspace

every day. One can see high traffic routes from/to Tokyo

(yellow, blue) as well an important number of over-flights

(pink).

More formally, we consider the vector of random processes

GAPt = PLNt −REALt, t ∈ R, where the ith component

GAPi,t = PLNi,t − REALi,t represents the gaps between

the planned and realized number of entries in sector i. The

process is observed in 5 minutes time intervals, leading to

288 samples per day. For the European Airspace, 91 week-

days are available (Mon-Thu) in the summer period May, 13

- Sept. 29. 2004. For the Japanese Airspace, 11 days from

August and November in the Year 2006 are available.

c) Time-Plots: Typical time plots of one component

process GAPi,t can be seen in Figure 3. The top panel

shows a sector from the European Airspace, the bottom

shows an example from the Japanese Airspace. In both, the

gaps fluctuate around 0, the variance looks constant during

the day (7-19h). The marginal distributions of the processes

turned out to be symmetric, as expected (not shown). In

the following, we assume that the component processes are

second-order stationary during the day.

d) Cross-correlation plots: We now analyze in more

detail cross-correlations between local neighbors (local

correlation) and between far lying sectors (non-local

correlation). Figure 4 shows typical cross-correlation matrices.

In the left panel, the 2x2-matrix from the two neighboring

sectors T01 and T27 from the Japanese airspace are shown.

The diagonal elements correspond to the autocorrelation

functions (acf) up to lag 30, corresponding to 2h30. Both

Airspace Type avg max

Europe
local 0.19 0.34
non-local 0.16 0.24

Japan
local 0.24 0.28
non-local 0.23 0.36

Table II
SUMMARY STATISTICS FOR CORRELATION COEFFICIENTS. TOP:

EUROPEAN AIRSPACE. BOTTOM: JAPANESE AIRSPACE.

Airspace Type # coeffs lag-range

Europe
local 1.29 [-4, 3]
non-local 1.09 [-6, 6]

Japan
local 4.3 [-4, 2]
non-local 5.2 [-8, 8]

Table III
SUMMARY STATISTICS FOR CORRELATED SECTORS. TOP: EUROPEAN

AIRSPACE. BOTTOM: JAPANESE AIRSPACE.

show no peaks. The off-diagonal elements display the

cross-correlations for positive lags in the upper diagonal

ρ(GAPit, GAPj,t+k) and negative lags in the lower diagonal

ρ(GAPit, GAPj,t−k). A peak at lag -3 has value 0.26. Its

neighbors (lag -2 and -4) show still some higher value than

the remaining ones. These three coefficients are the only

interesting in the plot.

For more insight into correlation between far lying sectors,

we analyze the two sectors EXH and EUY from European

Airspace. They are separated by the two sectors EUF and

EXE. Their correlation matrix function is plotted in the right

panel of Figure 4. A decay of autocorrelation, starting from

-0.1, can be seen. A peak in the cross-correlation is found at

lag -5.

Table II summarizes the significant correlations of the full

cross correlation matrices. In Europe, local correlations are

on average 0.19 and have a maximum of 0.34 (columns 2,

3). The non-local correlations are on average 0.16 and have

a maximum of 0.24. In Japan, the local correlations are on

average 0.24 with a maximum of 0.28. And the non-local

correlations are on average 0.23 and have a maximum of 0.36.

All correlation coefficients are positive. Table III summarizes

how two sectors are correlated. Of interest are the number of

significant coefficients (at different lag values) and the time

lag of these coefficients. In Europe, for locally correlated

sectors, 77 % have exactly one significant coefficient, 19 %

have two and 4 % three or four, leading to an average of

1.29 coefficients (column 2). In the Japanese Airspace, the

average number is 4.3. For non-locally correlated European

sectors, 91 % have exactly one and 9 % have two significant

coefficients, averaging 1.09. The Japanese is higher again,

with 5.2 significant coefficients per correlated sectors. Local

correlations occur between lags -4 and 3, and non-local

ones between lags -6 and 6 (column 3) in the European and

between lags [-4,2] and [-8,8] in the Japanese Airspace. The
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Figure 3. 3 successive week-days of gaps between planned and realized traffic at a sector entry, 5 minutes time-scale. Top: Sector from European Airspace.
Bottom: Sector from Japanese Airspace. Daily repeating patterns. Constant mean around 0, constant variance over time (except night hours).
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Figure 4. Cross-correlation matrices. Left: local neighbors. Right: non-local sectors
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higher average values in the Japanese Airspace have been

analyzed further: there are generally many coefficients close

to the critical value. This can be attributed to the higher

sample variability as compared to the European data, because

of the smaller sample size and because of the quality of the

Japanese Airspace data [Gwi08].

The weak autocorrelation of the component processes and

the sparse number of peaks in the crosscorrelation matrices

suggest that the correlation structure in the system (i) does

not contain spurious correlations because the component

processes do not imply a severe variance inflation and (ii)

has an intuitive explanation: all coefficients lie in the range

of expectation since the traversal time for one sector lies

between 6 and 10 minutes.

e) Visualization of correlation matrix: The correlation

matrix functions for all 31 European and all 21 Japanese

sectors were estimated up to lag k = 30, corresponding to

2.5 hours.

Figure 5 visualizes the results. An arrow between two

sectors (i, j) represents a significant correlation at least one

lag k. Positive and negative lags have opposite arrows. Local

correlations are drawn in red. They reproduce almost the route

network. For example, in the central flow (Frankfurt-London),

they are bi-directional, whereas in the flow from Zurich to

London, they are mono-directional. Non-local correlations are

plotted in green. They reproduce only routes with high traffic

densities. No correlations between two sectors that are not

connected by a route are found.

IV. CONCLUSION AND FUTURE WORK

We analyzed how gaps between planned and realized traffic

propagate through the European and the Japanese airspace. For

this we did a correlation analysis for the most congested part of

the systems. Because of the motion of aircraft, gaps propagate

to neighboring sectors, expecting positive correlation coeffi-

cients. The question in the analysis was whether there are

unexpected coefficients. Such coefficients would be caused

by traffic controllers or flow managers who compensate for

high gaps by re-routings or speed adjustments. Such strategies

would often lead to negative correlation coefficients. We first

analyzed the risk of obtaining misleading coefficients in a large

correlation matrix. Then, we analyzed data from the European

and Japanese airspace.

Our main results were:

• European and Japanese Airspace show similar patterns.

• significant cross-correlations appear on two levels: (i)

locally, that is between a sector S and a direct neighbor

and (ii) on high density routes, that is between two sectors

S1, S2 that are connected through a flight route with high

traffic densities.

• all correlations are positive.

• their lags correspond to the average traversal times.

No unexpected correlations have been found, and none of

the correlations appears to be induced by the autocorrelation

structure of a component process.

On the other hand one can argue that systematic re-routings

would cause only weak correlations. Also, correlation assumes

that the only source of covariation lies in the two variables

under study. Indeed, the average strength of correlation was
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0.2 in our data sets. This means that the non-existence for such

strategies cannot be concluded; it can only be confirmed that

such strategies currently show very weak effects in the counts

of aircraft entering flight sectors. Such information is useful

for demand prediction based on traffic densities: network-

effects from far-lying sectors appear to have negligible effect.

In order to get a deeper understanding of how controllers treat

high workloads, a more specific model should be built. As a

next step, inspiration for the construction of semi-empirical

models (of conflict probabilities) can be found in the work of

[Jar03]. This work is a step toward the identification of the

mechanisms that lead to congestion in air traffic. Based on

this, flow planning can be improved by taking into account

the traffic predictions.
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VI. VALIDATION

Figure 6 shows 4 scatter plots of variables in the system.

The two upper ones are from the Japanese- the two lower

ones from European Airspace. In each panel the bold line is

the sample mean. It is reasonably linear. No other functional

form of dependency is visible, neither. The first and third have

significant coefficients of linear correlation. The second and

fourth ones have not. Thus, linear correlation as a measure for

dependence seems justified, even if the dependency between

the variables is visibly weak.
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