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AbstractðHigh-fidelity models of airport and airspace capacity 

enable researchers to study modernization strategies that optimize 

capacity.  The design and the development of airport and airspace 

capacity models require volumes of detailed aircraft movement 

data in the terminal airspace. This data, while it exists in the public 

realm, is highly challenging and cumbersome to collect in large 

quantities. In this study, we present a methodology to develop our 

titled Approach Airspace Characterization (AAC) database, fed 

by flight data scraping techniques and transcriptions of Air 

Traffic Control voice commands in the terminal airspace. We 

illustrate the mathematical mechanisms required to assign 

aircraft movements to specific arrival fixes to develop high-fidelity 

models of movements. We then present innovative new ways of 

measuring delay and refining arrival airspace models based on 

this fine-grained data. 

Keywords: Air Traffic Control; Airport Capacity; Airspace 

Capacity; Arrival Fix Characteristics;  Data Transcription  

I.  INTRODUCTION 

Understanding airport and airspace capacity in a detailed 
way is a topic of great interest to those involved with 
modernizing and modifying the terminal airspace and airport 
infrastructure. The research community plays a large part in 
airspace modernization; researchers study strategies to optimize 
the airspace and airport capacity and test different scenarios. For 
researchers to quantify the impact of modernization initiatives 
such as the Federal Aviation Administration’s (FAA) Next 
Generation Air Transportation System (NextGen), detailed 
models of airport terminal areas and understanding the ways in 
which Air Traffic Control routes aircraft between arrival fixes 
are necessary. However, the data required to develop such 
models is highly challenging and cumbersome to collect in large 
quantities. The data is voluminous and collected and protected 
by airlines or Air Navigation Service Providers. In the following 
study, we present a methodology to develop an Approach 
Airspace Characterization (AAC) database, fed by flight data 
scraping techniques and transcriptions of Air Traffic Control 
voice commands in the terminal airspace. We conclude by 

describing a methodology to extract a new delay metric, just one 
of the many uses of the AAC database. 

There is a large body of literature modeling and 
characterizing airport and airspace capacity. Liu, Hansen, and 
Mukherjee collected Airport Arrival Rates (AAR) metrics 
provided by publically available FAA databases, and built 
probabilistic arrival rate scenarios using historical arrival rates 
[21]. Others have built optimization models providing a 
thorough treatment of capacity optimization from a classical 
capacity-curve-based approach [10], to a minimization of cost-
to-change runway configurations framed in the context of a 
hybrid optimal control problem [17]. Other studies attempt to 
characterize capacity by relating it directly to controller 
workload and utilizing simulation models to deduce workload, 
hereby deducing capacity [24].  

Researchers have already established that arrival capacity at 
an airport is highly dependent on meteorological conditions in 
the terminal airspace and worked to develop models of capacity 
and other airspace characteristics with weather information. 
Kamgarpour, Dadok, and Tomlin zoom in to the scope of 
individual trajectories and innovate ways to dynamically 
generate and optimize flight trajectories given incoming weather 
forecasts [16]. Buxi and Hansen expanded on the methodology 
of Liu, Hansen, and Mukherjee [21] and designed capacity 
profiles that incorporate weather forecasts in the form of 
terminal aerodrome forecasts (TAF) and STRATUS [4].  

A smaller yet active body of research integrates arrival fix 
dynamics into models of airport capacity. Gilbo modeled the 
role of arrival and departure fixes in the terminal airspace by 
integrating them with runways to form a single unit, with the 
objective of maximizing capacity utilization [11]. The author 
showed that an unevenness in fix utilization has negative 
consequences on airport capacity utilization. This conclusion 
was echoed by Kim and Clarke; choosing instead to minimize 
fuel consumption and terminal airspace environmental impact, 
they found that delay was unevenly distributed amongst the 
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arrival fixes [18]. Both Gilbo and Kim and Clarke did not have 
access to arrival fix throughput data at the hourly, individual 
flight level. Thus, they had to estimate a proportional allocation 
of arrival demand for each arrival fix. Gilbo examined Chicago 
O’Hare International Airport (ORD), and for model simplicity 
assumed that there were only four arrival and four departure 
fixes.  

Some research efforts have collected reliable and 
chronologically accurate aircraft movement data in the terminal 
airspace by retrieving and working with ATC communications 
data. As the task of retrieving reliable and chronologically 
accurate ATC communications data must be done manually, 
incurring time and labor costs, automation is critical. 
Researchers have tried to adapt automated speech recognition to 
be targeted specifically towards ATC communications, yet they 
ran into sensitivity and comprehension problems with 
automation [5, 15]. Thus, gaps in our understanding of how to 
automate the collection of ATC communications data remain. 
We note that attempts to introduce ATC communications as a 
modeling dimension has been done, but using simulated ATC 
directives based off of a probabilistic analysis of ATC 
transcripts [25]. 

In this research, we present a methodology to develop the 

AAC database, fed by flight data scraping techniques and 

transcriptions of Air Traffic Control voice commands in the 

terminal airspace. Such data could be used to validate the 

models developed by researchers such as Gilbo and Kim and 

Clarke. The data can also provide insights into real-life 

scenarios where airspace and airport capacity models or 

assumptions behave poorly. We are motivated by our belief that 

the approaches to model airspace and airport capacity can be 

strengthened with detailed information regarding hourly – and 

even more finer-grained moment to moment –throughput rates 

at the arrival fixes within the terminal airspace. 

The remainder of the manuscript is organized as follows: 

Section II introduces our data collection methodology and the 

design of the AAC database. This methodology is repeatable 

and flexible – other researchers can use it and customize it for 

their capacity studies. Section III provides an overview of our 

methodology of counting arrival fix utilization. Section IV 

presents derived metrics for delay that use the collected data. 

We illustrate this concretely using a proof-of-concept study 

with Philadelphia International Airport (PHL). Section V 

concludes our work with a summary and directions for future 

research.  

 

 

 

II. DATA COLLECTION METHODOLOGY AND DISCUSSION 

A. Air traffic control (ATC) transcription 

Airspace models tend to lack the crucial dimension of pilot-
controller interaction, especially if it can be merged 
chronologically with positional and movement data. However, 
transcription of ATC recordings is a time-consuming task, 
taking at minimum the length of the recording. Speech 
ambiguity and noise corruption result in unclear vocal 
transmissions that need to be replayed in order to accurately 
determine the issued command. The most critical delays in 
transcription occur when the transcriber cannot distinguish the 
flight identifier. This type of occurrence is magnified at PHL; 
due to American Airlines’ hub presence, many aircraft carry the 
same “American” callsign.  

Due to the inherent difficulties in obtaining ATC 
communications data, we focus on a few specific timeframes 
(days and times) over which we collect, transcribe, and 
ultimately determine the exact routings of flights in the PHL 
terminal approach airspace. We select a narrow but nontrivial 
timeframe for analysis: 4 pm to 5 pm EDT (2100Z to 2200Z) for 
three days in the Winter of 2015-2016. This time frame 
represents a good sampling of the afternoon and early evening 
increase in traffic movements (observed from the Airport 
Arrival Demand Chart (AADC) observations for PHL [8]) and 
provides a diverse mixture of aircraft types. Aircraft type 
diversity was noted during proof-of-concept transcriptions; we 
observed a number of “heavy” aircraft operating transatlantic 
routes as well as domestic flights arriving at PHL. We chose to 
analyze ATC recordings on three dates: December 29, 2015 and 
January 6 and 9, 2016. These three days had publically available 
ATC recording data and represented three different weather 
conditions: visual, marginal, and instrument. 

ATC recordings were obtained from LiveATC.net in a MP3 
file format [19]. Recordings can be freely accessed and 
downloaded if they are less than 30 days old (older recordings 
can be obtained at cost by contacting LiveATC.net) [22]. No 
processing was done on the audio files. oTranscribe, a free 
online transcription platform, was used for the transcription 
process [1]. oTranscribe integrates dynamic playback control of 
the audio file with a native word processor. The crucial 
component of oTranscribe worth highlighting is the ability to 
timestamp the transcribed text with the corresponding playtime.  

We designed transcription shorthand to accommodate our 
transcription of the fast-paced recorded ATC-pilot verbal 
communications. Our shorthand covers all commands given by 
ATC to pilots in the terminal approach airspace. While we do 
not present the entire list for the sake of space, a subset of these 
commands includes ICAO identifier, Flight Number, Weight 
Class, Descend, Altitude, Intercept-Localizer, Speed, and 
Waypoints. For example, ATC Phraseology of “Lufthansa Four-
Two-Six Heavy, descend and maintain five-thousand” is 
converted to “DLH426H dec 5000”. 
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The output from transcribing the timestamped ATC 
communications from oTranscribe is a plain text file. Lines 
containing transcribed ATC verbal commands are broken up 
into “tokens.” Every transcribed line begins with a timestamp 
token. Multiple commands can be linked together to reflect 
multiple directives in one verbal transmission. We illustrate this 
structure in Figure 1. Indicator variables are created to keep 
track of whether or not a certain type of command was issued. 

 

Figure 1.  Methodology for parsing the transcribed ATC shorthand 

LiveATC.net also archives the relevant Meteorological 
Aerodrome Report (METAR) associated with each audio file. 
We retrieve the METAR in raw format, translating it using 
iFlightPlanner METAR and TAF translator [14]. This is our 
primary source of information with regards to meteorological 
conditions experienced during the timeframe of our ATC 
transcription. 

B. Merging ATC transcription data with positional data: 

ñMatch-validate-retrieveò methodology  

Our transcribed ATC communications data characterizes all 
of the chronologically-sequenced commands dictated by ATC 
to a target aircraft within the investigation timeframe. We next 
merge this with timestamped positional and movement data 
from FlightAware to add ten critical dimensions to our data: 
latitude, longitude, current heading, direction the aircraft is 
facing, groundspeed in knots and miles-per-hour, altitude in 
feet, ascend/descend rate, the day and time of day the 
observation was made (down to seconds), and the reporting 
facility [9]. FlightAware data and the ATC transcript data are 
matched on airline identifiers and flight numbers. This step 
provides two benefits: 1) we can transition into automating the 
data collection efforts and 2) it allows us to cross-check our 
transcription accuracy. We will be alerted to errors due to the 
occurrence of any combination of the following inconsistencies 
that will appear between erroneous subsets of  ATC data and 
FlightAware data: 1) Flight destination is not PHL, 2) Actual 
time of arrival was not within 4 pm to 6 pm (we give a one hour 
“worst-case” buffer for the scenario of a flight being transcribed 
close to 5 pm), 3) The flight was not operated on the day of the 
4 pm to 5 pm investigation timeframe, 4) The flight does not 
exist, indicating that the flight ID was not found. The database 
creation methodology is outlined in Figure 2. 

 

Figure 2.  “Match-validate-retrieve” methodology to merge ATC 

communications data with positional and movement data obtained from 

FlightAware. This process is applicable to both manual and automated 
implementation. 

C. Automation of ñmatch-validate-retrieveò process using R 

package órvest ô and custom function scrapeFW  

We automated the “match-validate-retrieve” process using a 
statistical software and internet data scraping techniques. We 
used the R package ‘rvest ’ [27] and a custom function termed 
scrapeFW . We developed scrapeFW , a R function utilizing rvest  
designed to scrape positional and movement data from 
FlightAware for a specified flight. Data scraping techniques 
have been applied to aviation research before, ranging from 
analyzing Twitter regarding airline consumer sentiments [2] to 
gaining insight into airline revenue management systems and 
how they match lowest fare seat availability [23]. scrapeFW  
takes in three inputs, flightID , flightDate , and searchDate , 
all of which must be formatted strings. flightID  is the ID of 
current aircraft query (“DLH426”), flightDate  is the date of 
the investigation timeframe, and searchDate  is the proxy search 
date used in our “proxy date matching” technique.  

We developed a “proxy date matching” workaround to 
address an issue that occurs due to the way we handle web 
navigation. rvest  contains three functions to handle web 
browsing: html_session , follow_link , and read_html . To 
begin, html_session  takes in a Uniform Resource Locator 
(URL) and navigates to the website internally within R. From 
there, the user is able to use follow_link  to abstractly “browse” 
the web from the starting website. Because of this primitive 
level of web browsing, we cannot perform complex tasks such 
as logging in as a registered user to FlightAware and accessing 
the full archive of flight history. In the internal R web session, 
we only have direct access to the individual flight histories going 
back roughly two weeks. Therefore, we implement the “proxy 
date matching” workaround: 

1.) Ensure that the flight or list of flights to be queried 
operated no more than 4 months prior to the current 
date. If the flight or list of flights of interest are outside 
of this range, access to premium archive data from 
FlightAware must be purchased. 
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2.) Manually determine the day-of-week that the desired 
flight or list of flights operated on. Suppose that the day-
of-week is Thursday. From the current date, find the 
date of the most recent Thursday. The critical 
assumption of our “proxy date matching” workaround 
is that airports operate very similar or identical 
schedules on the identical day-of-week. 

3.) Input the desired flight or list of flights into scrapeFW  as 
the parameter flightID , the actual date of the flight as 
flightDate , and the proxy search date as searchDate . 

scrapeFW  will navigate to the “Flight History” page for flight 
flightID , exploiting the URL commonalities shared by all 
“Flight History” pages. If our “proxy date matching” 
assumptions hold, then follow_link  will find the link in “Flight 
History” matching searchDate , and navigate to the flight 
information page of the proxy flight. This proxy flight, under 
our workaround’s assumptions, is the identical flight to the 
actual flight of interest in all aspects except for the date of 
operation. 

When a valid webpage is targeted and navigated to by a web-
navigation function in rvest , an R object is generated. An 
attribute of that object is the URL of the current webpage that 
the internal web session is on. Once we have navigated to the 
flight information page of the proxy flight, the URL attribute of 
the associated R object is the end goal of our “proxy date 
matching” workaround. We were not able to directly access the 
desired flightID  on flightDate  because the URL for this page 
additionally requires the flight departure time and the ICAO 
airport code of the origin and destination airport. All of these 
previously missing components are contained within the string 
of the end-goal URL. Parsing through this URL using various 
substring and string-concatenation functions, we are now able to 
access the desired flightID  on flightDate . 

Exploiting URL similarities once again, we navigate to the 
“tracklog” page of the desired flightID  on flightDate . The 
“tracklog” page consists primarily of a table with columns 
containing the ten positional and movement data mentioned 
previously. On FlightAware, the table in all “tracklog” pages 
share a common XPath node address, which we uncover using 
Google Chrome’s built-in webpage element inspector [12]. In 
the case of FlightAware, every XPath for the table of positional 
and movement data is given by 
ó//*[@id=òtracklogTableò=]ô. This is a valid XPath as long 
as the current browsing session is correctly at a valid “tracklog” 
page. Two rvest  functions, html_nodes  and html_table , 
properly parses the XPath and pulls the corresponding table into 
a R data frame. Built-in “successful query” detection will print 
a success prompt if the correct data is found and pulled, giving 
a visual cue that the search was successful. Otherwise, scrapeFW  
will terminate prematurely. Additionally, an error will be 
thrown, usually by a function within rvest . We have now 
detailed the automation process of obtaining FlightAware data 

using web-scrapping techniques for flights observed in the ATC 
transcripts. 

Our methodology to collect and merge high-fidelity and 
detailed data, which has the ability to capture controller-side, 
crew-side, and airspace operations is summarized in Table I. 
Note that while this report focuses on one specific time window 
at Philadelphia International Airport as a proof-of-concept, it is 
applicable to virtually any time window at any airport. 

TABLE I.  COLLECTION METHODOLOGY STRENGTHS &  CONSTRAINTS 

ATC 

Communications 

Data Transcription 

¶ Primary information source 

¶ High-fidelity 

¶ ATC commands to crew characterized completely 
in time and content 

¶ Airport and airspace configurations known for time 

of recording 

¶ Investigative timeframe must be feasible in terms 
of length 

¶ Data quality subject to transcription accuracy 

¶ Relies on availability of LiveATC.net archives 

FlightAware 

Positional and 

Movement Data 

¶ Position, orientation, speed, and altitude known at 
an individual flight level 

¶ Sufficient data sampling rate allows for first-order 
interpolations 

¶ Cross-checks ATC communications transcription 
for inaccuracies and errors 

¶ Automated collection greatly reduces process time 

¶ Relies on availability of FlightAware flight 
history archives 

¶ Some flights do not broadcast certain data on 
ADS-B (e.g. altitude) 

III.  ARRIVAL FIX CAPACITY METRICS 

We have now completely characterized the selected 
investigation window with our merged ATC communications 
data and flight-by-flight positional and movement data. We 
proceed to explore the process of extracting arrival fix utilization 
and throughput, and visualize the results in meaningful ways. 

A. Methodology for obtaining arrival fix utilization metric 

and validation of methodology 

In the following section we present a methodology to obtain 
an arrival fix utilization metric from the AAC database we 
created. This requires matching, and ultimately assigning, every 
flight to its most likely arrival fix. Figure 3 shows the flight 
tracks of observed arrivals for our three study days based on 
their longitude and latitude as captured by the AAC. Trajectories 
marked in red were on January 9, 2016, with METAR indicating 
marginal visual flight conditions (MVFR).  Trajectories marked 
in blue were on December 29, 2015, with METAR indicating 
instrument flight conditions (IFR). Trajectories marked in green 
were on January 6, with METAR indicating visual flight 
conditions (VFR). The airport and the arrival fixes for PHL are 
also plotted according to their latitude and longitude coordinates 
given in Table II. Coordinates for the airport and arrival fixes 
were obtained from openNav [20], and the orthodromic 
distances between arrival fixes and PHL were obtained from 
SkyVector, an online flight planning tool used by aviators [26]. 
The plots were generated through GPSVisualizer [13]. 
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Figure 3.  Approach trajectories for arrivals observed in ATC transcripts 
between 4 pm and 5 pm EDT on three different days, chosen to reflect 

meteorological diversity. Circular detection boundaries with utilization radius 

of 3 nmi. (5.6 km) are makred around all arrival fixes 

TABLE II.  ARRIVAL FIX AND AIRPORT GEOGRAPHICAL DESCRIPTORS 

WITH HAVERSINE DISTANCE CALCULATIONS 

Name 
╛╪◄ȟ╛▫▪▌ 
in radiansa 

▀╪ȟἜἒἘ 
(nmi.) 

▀╪ȟἜἒἘ 
(nmi.) 

Absolute 

Error  

(nmi.) 

PHL Ȣ ȟ Ȣ  --- --- --- 

JIIMS Ȣ ȟ Ȣ  23.7 23.7 0.0 

DQO Ȣ ȟ Ȣ  20.5 20.6 0.1 

BUNTS Ȣ ȟ Ȣ  26.5 26.6 0.1 

SPUDS Ȣ ȟ Ȣ  35.9 35.8 0.1 

HOGEY Ȣ ȟ Ȣ  38.9 38.9 0.0 

PTW Ȣ ȟ Ȣ  25.6 26.4 0.8 

ESSSO Ȣ ȟ Ȣ  40.1 40.1 0.0 

VCN Ȣ ȟ Ȣ  23.7 23.7 0.0 

 

The task at hand – assigning flights to the arrival fix they 
visited before landing and then calculating arrival fix utilization 
– is inherently a geometric problem. To that extent, we present 
some mathematical notations to simplify our description. Let the 
set ὃ be defined as the set of all arrival fixes utilized by PHL. 
Let •ȟ‗  be the latitude-longitude coordinates for each 
individual arrival fix ὥᶰὃ. Let Ὂ be the set of all unique flight 
IDs obtained from the ATC transcription during the 
investigation timeframe Ὕ on some given day Ὠ. A flight Ὥɴ Ὂ 
is indexed sequentially in set Ὂ by the order of first appearance 
of flight Ὥ’s flight ID in the ATC transcription. Let time index 
ὸɴ Ὕ indicate any particular instant in time within the valid 
timeframe, specified up to seconds. At some time ὸɴ Ὕ, a 
particular flight Ὥɴ Ὂ is located at latitude-longitude 

coordinate •ȟ‗ . We define coordinates •ȟ‗  and 

•ȟ‗  to be converted to radians instead of degrees, ὥᶅᶰ
ὃȟᶅὭɴ Ὂȟᶅὸɴ Ὕ. We use the haversine formula [3] to 

calculate the orthodromic distance Ὠȟ between flight Ὥ and 

arrival fix ὥ at time ὸ, explicitly written as: 

Ὠȟ ςὶÁÒÃÓÉÎÈÁÖɝ• ÃÏÓ• ÃÏÓ•ÈÁÖɝ‗          (1) 

ɝ• and ɝ‗ are latitude and longitude magnitude differences, 

respectively. Explicitly, ɝ• • •  and ɝ‗ ‗ ‗. The 
haversine function ÈÁÖ— is explicitly defined as ÈÁÖ—ḧ
ÓÉÎ—Ⱦς, with — measured in radians. The constant ὶ is the 
radius of the Earth, which we calculate by taking the arithmetic 
average of the meridional radius ὶ στςπȢψφ nautical miles 
(nmi.) and the polar radius ὶ στυυȢυπ nmi. [28], giving us a 

mean radius ὶ στσψȢρψ nmi. Table II shows a validation of 

equation (1) by calculating the orthodromic distance Ὠȟ  

between all arrival fixes ὥ and PHL, comparing it to given 

orthodromic distances ὨӶȟ  obtained from SkyVector. The 

haversine validation resulted in an average absolute error of 0.14 
nmi. (around 260 meters). 

Figure 3 confirms that it is not practical to assume that at 
some time ὸɴ Ὕ each flight Ὥ will pass directly over a given fix 

ὥ such that Ὠȟ π nmi. We define a utilization detection 

radius ὶ for each arrival fix ὥ, and set ὶ σ nmi, ᶅ ὥᶰὃ. We 
overlay the detection boundary with radius ὶ onto each arrival 
fix in Figure 3. By visual inspection, we observe that some 
detection boundaries completely characterize arrival fix usage 
for that specific arrival fix ὥ, while others will underestimate 
usage due to detection insensitivity. 

Due to how the setting is specified, we are working in 
domain ὸȟὨȟּׂש which relates spatial information Ὠ and ATC 
communications ּׂש to the current observed time ὸ. A nontrivial 
combination ὸȟὨ that exists for all flights is the time at which 
the flight touches down at the threshold of a certain runway. 
Therefore, we define the set ד of all runways Ὑ, and another 
utilization detection radius ὶ ρ nmi. for each threshold of 
runway Ὑᶰד. Since this proof-of-concept focuses on PHL, let 
set ד contain the elements ψȟω,ȟω2ȟρχȟςφȟςχ,ȟςχ2ȟσυ . A 
simplified airport diagram of PHL is shown in Figure 4 [7]. We 
reason that a 1 nmi. utilization detection radius is justified for 
runway arrival detection, because the visualization in Figure 3 
shows that positional and movement data display much more 
precise convergence to the runway threshold, compared to the 
level of dispersion at each arrival fix. The process of calculating 

a distance Ὠȟ between a flight Ὥ and runway threshold Ὑ at time 

ὸ is identical to the procedure for arrival fix distance Ὠȟ. 

We define an indicator variable Ὅȟ ρȟπ to be 1 if flight 

Ὥ at time ὸ returns Ὠȟ σ nmi. per (1), and 0 otherwise. Let 

ὸ ὸȟ with ὸȟὸᶰὝ; if Ὅȟ ρ, then Ὅ
ȟ
π regardless of  
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Figure 4.  Simplified airport diagram with runways defined in set ד labeled 

what value Ὠ
ȟ

 gives, ᶅ ὮȢ This constraint is to prevent counting 

a specific flight Ὥ utilizing fix ὥ multiple times, as in actuality 
this did not occur. We also define a runway landing indicator 

Ὅȟ πȟρ which has the same characteristics as Ὅȟ but 

applies to the threshold of runway Ὑᶰד. These specifications 
and constraints are diagrammed in Figure 6. This model 
disregards 1) multiple arrival fixes being used by one flight, as 
this is rare in practice, and 2) indication of a flight Ὥ holding at 
arrival fix ὥ. In Section IV we discuss possible future research 
motives that will investigate incorporating airborne holding. 

To validate our arrival fix utilization counting methodology, 
we compute an analytical utilization error Ὡ defined as the 
difference between the arrival fix utilization count summed over 

all PHL arrival fixes for the entire investigation timeframe Ὕ and 
the number of unique observed arrivals obtained from ATC 
transcriptions, which we counted manually to be ꜝ χψ. In 
essence, we are performing a first-order validation of our 
utilization detection radii ὶ and ὶ, ᶅ ὥᶰὃ and ᶅ ὶɴ  .ד

Ὡ В В В Ὅȟ ꜝᶪᶰᶪᶰᶪᶰ                      (2) 

A runway utilization detection error ὩЉ is similarly calculated: 

ὩЉ В В В Ὅȟ ꜝᶪ ɴדᶪᶰᶪᶰ                      (3) 

Our results are shown in Table III . We note that the utilization 
error Ὡ was 1, indicating that we counted 79 total detected 
arrival fix utilizations, overcounting by 1. The runway 
utilization detection error was larger in magnitude, with ὩЉ
ρτ, indicating 64 total detected runway utilizations, 

undercounting by 14. An important caveat is that all ꜝ χψ 
observed flights in the ATC transcripts may not have landed. 
One prominent example would be a flight who checks in with 
the final approach controller at the very end of the one-hour 
investigation timeframe. This might account for the low runway 
utilization detections. However, since future analysis is much 
more contingent on accuracy regarding arrival fix throughput, 
the very low Ὡ error is an encouraging result. 

B. Arrival fix usage and time-space trajectories 

Important quantities in air transportation include delay 
metrics, interarrival times, and queue formations, each involving 
a component of time, distance, or both. Therefore, an intuitive 

 Figure 5. (Below) Example of the methodology behind counting arrival fix 

usage and runway arrival statistic, using sample flight BAW67 vectored to 

arrival fix SPUDS before proceeding to land at PHL on runway 9R. 
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TABLE III.  UTILIZATION DETECTIONS AND ERROR MEASUREMENTS 

Arrival 

Fix  

Utilization 

Detections 

Cumulative Arrival 

Fix Detection Count 
  ▄ Ἵ▄ צּ

SPUDS 5 5 

78 1 -14 

PTW 1 6 

BUNTS 30 36 

DQO 6 42 

JIIIMS/ 

VCNa 15 57 

HOGEY/

ESSSOb 22 79 

Runway: 64 --- 

 

and informative way to visualize the arrival fix data is to plot the 
distance between a flight Ὥ and fix ὥ as function of time ὸ. We 
call this function a trajectory ɬ, ɬᶰ ὸȟὨȟּׂש and maps ɬḊ
ὭȟὥȟὸᴼὨ. The time-space diagrams are shown in Figures 6, 

7, and 8. Each figure shows the series of six time-space diagrams 
for each arrival fix or arrival fix pairs, for the three chosen days. 
We will highlight some key features of these time-space 
diagrams, as well as make some qualitative observations based 
on various aircraft trajectories we see plotted in time and space. 
These observations serve as a launch-pad for future analysis and 
modeling, where our collection methodology and resulting data 
play a critical role. 

 

Figure 6. Arrival fix time-space diagram, December 29, 2015 (IFR) 

These diagrams show the orthodromic distance Ὠȟ between 

a particular flight Ὥ and an arrival fix ὥ at some given time ὸ, 
calculated through equation (1). To highlight an example, a 
trajectory for aircraft Ὧ that noticeably decreases with some 

negative slope, approaching Ὠȟ π at some time ὸ ὸ, and 

then rapidly increases with a positive slope of roughly equal 
magnitude is an indication that flight Ὧ was assigned and utilized 
arrival fix ὥ, reaching that fix at time ὸ, and continuing the final 

approach to PHL. Let the trajectory ɬO  designate the set of all 
trajectories with this characteristic. We observe from the time- 

 

Figure 7. Arrival fix time-space diagram, January 6, 2016 (VFR) 

 

Figure 8. Arrival fix time-space diagram, January 9, 2016 (MVFR) 

space series for all three days that the arrival fixes BUNTS and 
JIIMS/VCN has the most trajectories ɬᶰ
ɬO ȟɬO Ⱦ  , indicating heaviest arrival fix loads. 

This is confirmed by our CDF column of arrival fix utilization 
in Table III. 

IV.  DELAY METRICS AND FUTURE ANALYSIS DISCUSSION 

A. Deriving delay from trajectory characteristics 

One measure of delay is the positive differential between the 
nominal arrival time and actual arrival time. Our trajectories ɬḊ
ὭȟὥȟὸᴼὨ allow us to generate a delay metric from this set of 

arrival fix throughput data, which can be related directly to 
airborne holding. We illustrate this with several example flights, 
all taken from the January 6, 2016 observation set. Let flight Ὥ
37!συψ, observed from the perspective of ὥ "5.43 from 
ὸ σȡτφȡυσ pm to ὸ τȡρφȡρτ pm. The space-space and 
time-space diagram of this flight is shown in Figure 9. Let  
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Figure 9. Time-space with space-space diagram overlaid (SWA358) 

ɬ ᴾ
ᶰ ȟ

 be the trajectory for SWA358, and returns the 

distance between SWA358 and BUNTS at a valid time ὸ. It is 
apparent by inspection of Figure 9 that SWA358 experienced no 
in-air holding; it was vectored direct to BUNTS, and followed a 
smooth path to PHL. We generalize this observation to assert 
that any flight assigned to fix ὥ which did not experience 
airborne holding should also expect to have a similar trajectory 
from the perspective of ὥ. 

We now inspect two other flights which were observed in 
the same 4 pm to 5 pm window of the same day: American 
Airlines Flight 1714 and PSA Airlines Flight 5164. Their space-
space and time-space diagrams are shown in Figure 10 and 11, 
respectively. 

 

Figure 10. Time-space with space-space diagram overlaid (AAL1714) 

 

 

Figure 11. Time-space with space-space diagram overlaid (JIA5164) 

We immediately note that whatever functional form these 

two flights have, namely ɬ
ᴾ Ⱦ

ᶰ ȟ
 and  

ɬ
ᴾ Ⱦ ȟ Ⱦ  

ᶰ ȟ
ȟ is not the same functional 

form as the trajectory for a flight who did not experience 
airborne holding. Hence, we denote the set of trajectories for 
flights Ὥ who most likely experienced airborne holding, observed 
from the perspective of fix ὥ during time interval ὝṖὝ as 

ɬP
ᶰ

. An interesting problem with flavors of functional 

analysis, trajectory generation, arrival fix throughput, and ATC 
response could be posed, attempting to characterize arrival 
delays and arrival queue formation by looking at the functional 

differences between the set of trajectories ɬP
ᶰ

 and ɬP
ᶰ

. 

B. Future potential topics for analysis 

We conclude this section by suggesting a medley of other 
ways to utilize the data that we have collected and processed in 
a manner that enhances our understanding of how to better 
model arrival fixes in the context of the entire terminal airspace. 
We mentioned previously that our arrival fix utilization counting 
methodology did not take into account airborne holding 
possibilities. One future topic could be to find a suitable “no-
count” time difference  such that only if ὸᶰ ὸȟὸ  ṒὝȟ
the no-multiple-count constraint is active. Define a hold 

indicator variable Ὄȟ ρȟπȢ If ὸᶰὸ ȟὸ ṒὝ where 

ὸ is the last observed time in Ὕ, and if Ὠȟ σ nmi., then Ὅȟ
ρ and Ὄȟ ρ as well. The counting methodology can be 

refined further by dynamically varying the detection radius for 
each arrival fix depending on a calculated flyover dispersion rate 
at that specific arrival fix. 

Finally, given an investigation timeframe Ὕ, suppose we 
examine a specific fix ὥ. We retrieve aircraft type information 
from FlightAware for each observed flight utilizing fix ὥ. The 
set of aircraft types that we retrieve is the fleet mix for ὥ. We 
can map this to an interarrival time between any pair of flights 
utilizing fix ὥ. Our time-space diagrams allow for a natural 
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calculation of interarrival times at arrival fix ὥ by looking at the 
Euclidean distance between two trajectory curves. We have all 
the information we need to model an arrival queue stemming 
from fix ὥ, because we have the sequence of flights as well as 
the time separation between each flight, which is directly related 
to the derived interarrival times. Arrival aircraft are vectored 
from their designate arrival fix to the airport by ATC; we know 
the time at which ATC assigned a particular altitude and speed 
to an aircraft, as well as the time at this this altitude and speed 
were achieved. In essence, we know the flow of aircraft prior to 
arriving at fix ὥ, and the processing time and spatial information 
after passing fix ὥ and beginning the final approach to PHL. We 
can develop a much more nuanced model of hourly arrival fix 
throughput, incorporating more realism by adding a dimension 
of ATC directives, completing ὸȟὨȟּׂשȢ 

V. CONCLUSION 

Motivated by the need for high-fidelity models of airport 

and airspace capacity, we present here a methodology to 

develop a database of detailed aircraft movements in the 

terminal area along with arrival fix assignments. We use data 

scraping techniques and a transcription methodology of Air 

Traffic Control voice commands in the terminal airspace. We 

illustrate the mathematical mechanisms required to assign 

aircraft movements to specific arrival fixes to develop high-

fidelity models of movements. We then present innovative new 

ways of measuring delay and refining arrival queuing models 

based on this fine-grained data. We believe that the 

methodology proposed and described herein positions 

researchers in airport and airspace capacity to address a number 

of new research directions, ranging from fine-tuning of 

previously established models, to selecting a narrow, nontrivial 

timeframe and completely characterizing the airspace during 

that timeframe from every critical viewpoint. These research 

directions position the field to understand and model airport and 

airspace capacity in an even more dynamic and fine-grained 

way, through publically available data. 
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