Modelling Flexible Thrust Performance for Trajectory Prediction Applications in ATM

Ismael Matamoros1, Xavier Prats1
Javier López Leonés2, Enrique Casado2, Miguel Vilaplana2
Vincent Mouillet3, Angela Nuic3, Laurent Cavadini3

1Technical University of Catalonia (UPC)
2Boeing Research & Technology Europe (BR&TE)
3EUROCONTROL Experimental Centre (EEC)

ICRAT 2016
Overview

1. Introduction
2. Background
3. Assumed Temperature Model
4. Thrust Models
5. Model Validation
6. Results
Section 1

Introduction
Introduction

Trajectory Prediction in ATM

Trajectory predictors

Estimate future trajectory of an aircraft based on mathematical models.

Applications:

- Simulation in ATM research
- Environmental assessment tools (EUROCONTROL’S ESCAPE)
- Decision Support Tools
- Trajectory Based Operations
- Many others...
Aircraft Performance Models (APM)

Mathematical framework to compute aircraft performance and dynamics.

- ATM simulation: take-off and departure procedures are of special interest.

- **Thrust models** provide information for environmental and noise assessment: noise, emissions, consumption...

- Accurate thrust models are available for conventional procedures (standard thrust ratings: MTO, MCT, MCL, MCR...).
Introduction

Reduced thrust operations

Reduced thrust operations

Take-off operations with a thrust level **lower than the maximum takeoff thrust**. They aim to reduce noise and engine deterioration.

- Reduced thrust can be achieved by different techniques:
 - Thrust derate
 - **Assumed temperature (AT)**

- Current APMs do not provide a validated methodology to **compute reduced thrust**.

Proposed model

In this paper we propose a validated methodology to **compute reduced thrust with the assumed temperature method**.
Section 2

Background
Background

Engine ratings

Thrust rating

Maximum certified thrust that an engine can provide under certain conditions

![Diagram showing thrust rating vs Outside Air Temperature (OAT)]

Engine operational limits:
- Combustion and inlet pressure
- Turbine inlet **temperature**
- Fan rotation speed
Assumed temperature method (Flexible thrust or FLEX)

Takes advantage of the **thrust rating limitation at high temperatures** to limit the thrust to the **minimum necessary** for a safe take-off.

For a fixed set of take-off conditions (take-off weight, airfield elevation, wind, etc.), the take-off distance is determined by the take-off thrust:

\[\text{TOD} = \text{TOD}(F_T) \]

In conventional operations, \(F_T = MTO \).

If \(\text{TOD}(MTO) < \text{TODA} \) then:

\[\exists F_T = F_{T,\text{min}} < MTO : \quad \text{TOD}(F_{T,\text{min}}) = \text{TODA} \]
The assumed temperature method

At the **maximum assumed temperature (MAT)**, the maximum certified thrust equals $F_{T,\text{min}}$.

The **regulatory limit** for the MAT is the one that results in **25% thrust reduction** with respect to the maximum rating.

Since the TOD depends on many factors, the MAT depends on the **take-off conditions**.
Background

Model structure

- **Assumed temperature model**: Polynomial model identified with manufacturer take-off performance data.
- **Thrust model**: ATM thrust models validated with AT input.
Section 3

Assumed Temperature Model
Assumed Temperature Model

Model dependencies

The MAT is determined by the **take-off conditions**:
- Airframe configuration
- Take-off weight
- Airfield elevation
- Outside air temperature
- Wind
- Runway length
- Runway slope
- Runway contamination
The MAT is determined by the **take-off conditions:**

- Airframe configuration
- Take-off weight
- Airfield elevation
- **Outside air temperature**
- Wind
- Runway length
- Runway slope
- Runway contamination
The MAT is determined by the *take-off conditions*:

- Airframe configuration
- Take-off weight
- Airfield elevation
- **Outside air temperature**
- Wind
- Runway length
- Runway slope
- Runway contamination
The MAT is determined by the **take-off conditions**:

- Airframe configuration
- Take-off weight
- Airfield elevation
- **Outside air temperature**
- Wind
- Runway length
- Runway slope
- Runway contamination
Assumed Temperature Model

Polynomial model

\textbf{AT Polynomial Model}

For a given airframe configuration i:

\[\text{MAT}_{\text{temp}}^{(i)} = f(h, w, l, m, \theta) \]

\[\text{MAT}_{\text{max}}^{(i)} = \text{cnt} \]

MAT is the minimum:

\[\text{MAT}^{(i)} = \min\{ \text{MAT}_{\text{max}}^{(i)}, \text{MAT}_{\text{temp}}^{(i)} \} \]

i: Airframe configuration
h: Airfield elevation
w: Wind speed
l: Runway length
m: Take-off weight
θ: Polynomial coefficients
$f(h, w, l, m)$: polynomial function of order n
Assumed Temperature Model
Parameter identification

AT Polynomial

\[\text{MAT}_{\text{temp}}^{(i)} = f(h, w, l, m, \theta) \]

- The polynomial \(f(h, w, l, m, \theta) \) is **linear in the coefficients \(\theta \).**

- The coefficients can be identified with **linear regressor estimators** from manufacturer take-off performance data providing the **MAT for different take-off conditions.**
Section 4

Thrust Models
Thrust Models

Base of Aircraft Data (BADA) thrust model: 3DoF, total energy model.
- BADA 3: almost 100% coverage
- BADA 4: 70% coverage

Aircraft Noise and Performance (ANP) database thrust model: intended to support environmental and noise assessments (ECAC Doc.29 and ICAO Doc 9911).
BADA thrust model

Net thrust contribution from all engines:

\[F_T = \delta \ W_{mref} \ C_T, \quad (1) \]

Thrust coefficient:

\[C_T = \sum_{i=0}^{5} \delta_T^i \left(\sum_{j=1}^{6} a_{6i+j} \ M^{j-1} \right) \quad (2) \]

Throttle parameter is captures the **thrust rating**:

\[\delta_T = \begin{cases}
\delta_{T,\text{flat}} & \text{if } \Delta T_{\text{ISA}} \leq \Delta T_{\text{ISA},k} \\
\delta_{T,\text{temp}} & \text{if } \Delta T_{\text{ISA}} > \Delta T_{\text{ISA},k}.
\end{cases} \quad (3) \]
Thrust Models
BADA thrust model

- Flat rated area (temperature-independent):
 \[
 \delta_{T,\text{flat}} = \sum_{i=0}^{5} \delta^i \left(\sum_{j=1}^{6} b_{6i+j} M_{i-1} \right) \tag{4}
 \]

- Temp rated area (temperature-dependent):
 \[
 \delta_{T,\text{temp}} = \sum_{i=1}^{5} c_i M_{i-1} + \sum_{j=1}^{4} \theta_T \left(\sum_{i=0}^{4} c_{5(j-1)+(i+1)+5} M_{i} \right) + \sum_{j=1}^{4} \delta^j \left(\sum_{i=0}^{4} c_{5(j-1)+(i+1)+25} M_{i} \right) \tag{5}
 \]

 \[
 \delta = \frac{p}{p_0}; \quad \theta_T = \frac{T_T}{T_0}; \quad T_T = \left(1 + \frac{\gamma - 1}{2} M^2 \right) T \tag{6}
 \]

Kink point \(T_K \) is explicitly given.
ANP-based thrust model

Net thrust for a given rating:

\[F_T = n \delta (E + F \ V_{CAS} + G_A \ h + G_B \ h^2 + H \ T), \] (7)

\((E, F, G_A, G_B, H) \) vary in the two areas of the thrust rating.

- Flat rated area (temperature-independent):

 \((E_L, F_L, G_{A,L}, G_{B,L}, H_L = 0) \)

- Temp rated area (temperature-dependent):

 \((E_H, F_H, G_{A,H}, G_{B,H}, H_H < 0) \)

Kink point is the intersection between \(F_{T,H} \) and \(F_{T,L} \):

\[T_K = \frac{1}{H_H} [(E_L - E_H) + V_{CAS}(F_L - F_H) + h(F_{A,L} - F_{A,H}) \]
\[+ h^2 (G_{B,L} - G_{B,H})] \] (8)
Section 5

Model Validation
MAT model identification

- MAT polynomials identified for **3 aircraft models**.
- **Reference assumed temperature data** was generated with Boeing’s Standard Take-off Analysis Software (STAS).
- STAS provides **take-off performance tables** from which the MAT can be extracted for **different take-off conditions**.
Parameter identification θ with Minimum Mean Square Error (MMSE) estimator.

For each aircraft, 3 polynomial structures were evaluated:
- 1st order $MAT^{(i)} = \theta_1 h + \theta_2 l + \theta_3 w + \theta_4 m + \theta_5$
- 2nd order $MAT^{(i)} = \theta_1 h^2 + \theta_2 hl + \theta_3 hw + \theta_4 hm + \theta_5 h + \ldots \theta_{15}$
- 3rd order $MAT^{(i)} = \theta_1 h^3 + \theta_2 h^2 l + \theta_3 h^2 w + \theta_4 h^2 m + \theta_5 h^2 + \ldots \theta_{35}$

Fitting quality assessment based upon RMS between reference data and MAT polynomials.

$$\varepsilon = \frac{1}{n} \sum_{i=1}^{N} (MAT_{\text{ref}} - MAT_{\text{model}})^2$$ (9)
Thrust models validation

- **Reference thrust data** obtained from simulated take-off trajectories.
- 56,700 trajectories simulated with Boeing Climbout Program (BCOP).
Using AT in the BADA thrust model

- The temperature of the intake airmass (OAT) is captured by M.
- The temperature used by the FADEC to derive EPR or NE is **captured by the total temperature ratio θ_T**.

$$C_T = \sum_{i=0}^{5} \delta_T^i \left(\sum_{j=1}^{6} a_{6i+j} M^{j-1} \right)$$

$$\delta_{T,\text{temp}} = \sum_{i=1}^{5} c_i M^{i-1} + \sum_{j=1}^{4} \theta_T^j \left(\sum_{i=0}^{4} c_5(j-1)+(i+1)+5 M^i \right)$$

$$+ \sum_{j=1}^{4} \delta^j \left(\sum_{i=0}^{4} c_5(j-1)+(i+1)+25 M^i \right)$$

Outside Air Temperature Assumed Temperature
Using AT in the ANP-based model

- Only one temperature input, also captures **physical effect** of OAT on flight performance.
- Actual OAT no longer used for thrust computation.

\[
F_T = n \delta \left(E + F V_{\text{CAS}} + G_A h + G_B h^2 + H T \right),
\]

Assumed Temperature
Section 6

Results
AT Model Results

- **Single flat region** corresponding to MAT_{max}.
- **Resolution** of reference AT data from STAS was 5°.

Figure: 1st order polynomial (5 coeff.), no wind, flaps 10 and TOW 65 t, 900ft airfield elevation.
Results

AT Model

Three flat regions: 3 possible choices for MAT_{max}:

- **Highest**: model higher than actual MAT in some regions.
- **Maximal range**: best RMS, too conservative in some regions.
- **Lowest**: never above the actual MAT, but too conservative.

Choice of MAT_{max} influences overall accuracy.

Option with **best overall accuracy** was chosen in each particular case.

Figure: 1st order polynomial (5 coeff.), no wind, flaps 10 and TOW 65 t, 1100ft runway.
Overall accuracy (RMSE)

- 1st order polynomials (5 coefficients): 6 – 11 °C.
- 2nd order polynomials (15 coefficients): 5 – 9 °C.
- 3rd order polynomials (35 coefficients): 3 – 6 °C.

Resolution of reference data was 5°C.

Trade-off (Complexity ↔ Accuracy): 2nd order

Table: RMSE of the AT model for different aircraft and airframe configurations

<table>
<thead>
<tr>
<th>Aircraft</th>
<th>RMSE (°C) – Second-order polynomial, 15 coef.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Flaps 1</td>
</tr>
<tr>
<td>B737</td>
<td>7.90</td>
</tr>
<tr>
<td>B757</td>
<td></td>
</tr>
<tr>
<td>B777</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Aircraft</th>
<th>Flaps 5</th>
<th>Flaps 15</th>
<th>Flaps 20</th>
</tr>
</thead>
<tbody>
<tr>
<td>B757</td>
<td>7.58</td>
<td>7.54</td>
<td>6.77</td>
</tr>
<tr>
<td>B777</td>
<td>8.52</td>
<td>7.84</td>
<td>7.68</td>
</tr>
</tbody>
</table>
Thrust Models Results

Overall accuracy (RMSE) in terms of:
- Net thrust: ANP / BADA thrust models.
- Thrust reduction.

Thrust Reduction

\[TR^{(n)} = \frac{T_{BCOP}^{(n)}(OAT) - T^{(n)}(AT)}{T_{BCOP}^{(n)}(OAT)} \cdot 100 \]
Results

Thrust Models

ANP

Thrust reduction vs. AT - Mach 0.235
Flaps=10, Hp=1500ft, Runway=9000ft, TOW=65T, OAT=20ºC

BADA

Thrust reduction vs. AT - Mach 0.235
Flaps=10, Hp=1500ft, Runway=9000ft, TOW=65T, OAT=20ºC
Table: Thrust RMSE for BADA and ANP

<table>
<thead>
<tr>
<th>APM</th>
<th>Absolute error [lbf]</th>
<th>Relative error [%]</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Total</td>
<td>Model</td>
</tr>
<tr>
<td>BADA</td>
<td>873</td>
<td>833</td>
</tr>
<tr>
<td>ANP</td>
<td>685</td>
<td>495</td>
</tr>
</tbody>
</table>

Error increment: **0.78%** BADA and **1.14%** ANP.

Table: Thrust reduction RMSE for BADA and ANP

<table>
<thead>
<tr>
<th>APM</th>
<th>Thrust reduction RMSE [%]</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Total</td>
</tr>
<tr>
<td>BADA</td>
<td>4.01</td>
</tr>
<tr>
<td>ANP</td>
<td>2.68</td>
</tr>
</tbody>
</table>

Error increment: **-0.09%** BADA and **0.66%** ANP.
Results

Thrust Models

Thrust
Flaps: 25, Starting elevation: 1500ft, Runway: 15000ft, TOW: 65000 kg
Wind= 0kt, OAT= 25°C, AT= 35°C

```
Trajectory error [%]

<table>
<thead>
<tr>
<th>Error</th>
<th>Thrust</th>
<th>Fuel Flow</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean</td>
<td>1.10%</td>
<td>0.09%</td>
</tr>
<tr>
<td>σ</td>
<td>1.64%</td>
<td>0.82%</td>
</tr>
<tr>
<td>RMSE</td>
<td>3.03%</td>
<td>0.82%</td>
</tr>
</tbody>
</table>
```
Conclusions

- The Maximum Assumed Temperature can be modelled as a polynomial function of the take-off conditions.

- Polynomials of second order are a fair trade-off between complexity and accuracy.

- BADA and ANP can be used to compute reduced thrust with the AT method without significant degradation of their overall accuracy.

Future work

- Validate the model with more aircraft types.
Thank you for your attention!
Questions?
Section 7

Backup Slides
Model Validation

MAT model validation

<table>
<thead>
<tr>
<th>TEMP (°C)</th>
<th>-10</th>
<th>0</th>
<th>5</th>
<th>10</th>
</tr>
</thead>
<tbody>
<tr>
<td>38</td>
<td>713*/43-46-52</td>
<td>738*/47-48-54</td>
<td>742*/47-49-54</td>
<td>746*/48-49-55</td>
</tr>
<tr>
<td>36</td>
<td>724*/44-47-53</td>
<td>750*/47-49-55</td>
<td>754*/48-50-56</td>
<td>758*/49-50-56</td>
</tr>
<tr>
<td>34</td>
<td>735*/44-48-54</td>
<td>762*/48-50-56</td>
<td>766*/49-51-57</td>
<td>770*/49-51-57</td>
</tr>
<tr>
<td>32</td>
<td>746*/45-49-55</td>
<td>774*/49-52-58</td>
<td>779*/50-52-58</td>
<td>783*/50-52-58</td>
</tr>
<tr>
<td>20</td>
<td>764*/47-50-57</td>
<td>792*/50-53-59</td>
<td>797*/51-54-60</td>
<td>801*/52-54-60</td>
</tr>
</tbody>
</table>
Model Validation

MAT model validation

<table>
<thead>
<tr>
<th>TEMP (°C)</th>
<th>-10</th>
<th>0</th>
<th>5</th>
<th>10</th>
</tr>
</thead>
<tbody>
<tr>
<td>40</td>
<td>702*/42-45-51</td>
<td>717*/46-47-53</td>
<td>720*/47-48-54</td>
<td>724*/47-48-54</td>
</tr>
<tr>
<td>38</td>
<td>713*/43-46-52</td>
<td>718*/47-48-54</td>
<td>724*/48-49-55</td>
<td>728*/48-49-55</td>
</tr>
<tr>
<td>34</td>
<td>735*/44-48-54</td>
<td>742*/48-50-56</td>
<td>750*/49-52-58</td>
<td>756*/49-52-58</td>
</tr>
<tr>
<td>30</td>
<td>757*/46-50-56</td>
<td>764*/50-53-59</td>
<td>770*/51-54-60</td>
<td>776*/51-54-60</td>
</tr>
<tr>
<td>28</td>
<td>761*/46-50-57</td>
<td>779*/50-52-58</td>
<td>785*/51-54-60</td>
<td>801*/52-54-60</td>
</tr>
</tbody>
</table>

OAT 30°C, No Wind

TOW = 70,000 kg
Table: Validity ranges of the MAT polynomial

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>-5</td>
<td>40</td>
<td>8000</td>
<td>15000</td>
<td>50000</td>
<td>80000</td>
</tr>
<tr>
<td>1000</td>
<td>-5</td>
<td>40</td>
<td>8500</td>
<td>15000</td>
<td>50000</td>
<td>80000</td>
</tr>
<tr>
<td>2000</td>
<td>-5</td>
<td>40</td>
<td>8500</td>
<td>15000</td>
<td>50000</td>
<td>77500</td>
</tr>
<tr>
<td>3000</td>
<td>-15</td>
<td>40</td>
<td>8500</td>
<td>15000</td>
<td>50000</td>
<td>70000</td>
</tr>
<tr>
<td>4000</td>
<td>-15</td>
<td>40</td>
<td>8500</td>
<td>15000</td>
<td>50000</td>
<td>67500</td>
</tr>
</tbody>
</table>