Evaluating the Design of Runways towards Mitigating Runway Excursions

Eunsun Ryu, Seth Young
• **Introduction**
• **Actual accident/incident data analysis**
• **Runway Centerline Deviation Study**
• **Conclusion**

The Runway Centerline Deviation Study was supported by the Federal Aviation Administration and Center of Excellence in General Aviation (PEGASAS: The Partnership to Enhance General Aviation Safety, Accessibility, and Sustainability).
Introduction
Why runway design is important

- 2000-2015, The entire number of accident on NTSB database: **30,176** cases
 - Runway related accidents: 15,613 (52%)
 - Fatal accidents: 6,395
 - Runway related fatal cases: 2,640
Type of accidents on runway

- Incursion
- Excursion
- Undershoot
- Veer-off
- Overrun
Why runway excursions should be mitigated
Runway Design - FAA
Runway Design Components

- Runway Width
- Runway Length
- Runway Orientation (Direction)
Safety Areas Around Runway (FAA)
Runway Design Category - FAA

Aircraft Approach Category (AAC)

Aircraft Design Group (ADG)
Runway Design Category - FAA

Aircraft Approach Category

<table>
<thead>
<tr>
<th>Code</th>
<th>Approach Speed $\left(\frac{V_{Ref}}{V_{App}} \right)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>~91kt</td>
</tr>
<tr>
<td>B</td>
<td>91~121kt</td>
</tr>
<tr>
<td>C</td>
<td>121~141kt</td>
</tr>
<tr>
<td>D</td>
<td>141~166kt</td>
</tr>
<tr>
<td>E</td>
<td>166kt~</td>
</tr>
</tbody>
</table>
Runway Design Category - FAA

Aircraft Design Group

<table>
<thead>
<tr>
<th>Code</th>
<th>Tail Height</th>
<th>Wingspan</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>~20ft (~6m)</td>
<td>~49ft (~15m)</td>
</tr>
<tr>
<td>II</td>
<td>2030ft (69m)</td>
<td>4979ft (1524m)</td>
</tr>
<tr>
<td>III</td>
<td>3045ft (913.5m)</td>
<td>79118ft (2436m)</td>
</tr>
<tr>
<td>IV</td>
<td>4560ft (13.518.5m)</td>
<td>118171ft (3652m)</td>
</tr>
<tr>
<td>V</td>
<td>6066ft (18.520m)</td>
<td>171214ft (5265m)</td>
</tr>
<tr>
<td>VI</td>
<td>6680ft (20m)</td>
<td>214262ft (6580m)</td>
</tr>
</tbody>
</table>
Table A7.7. Runway design standards matrix, C/D/E - I

Aircraft Approach Category (AAC) and Aircraft Design Group (ADG):	C/D/E - I				
ITEM	DIM²	VISIBILITY MINIMUMS			
		Visual	Not Lower than 1 mile	Not Lower than 3/4 mile	Lower than 3/4 mile
Runway Design					
Runway Length	A	100 ft	100 ft	100 ft	100 ft
Runway Width	B	10 ft	10 ft	10 ft	10 ft
Shoulder Width		120 ft	120 ft	120 ft	120 ft
Blast Pad Width		100 ft	100 ft	100 ft	100 ft
Blast Pad Length		16 knots	16 knots	16 knots	16 knots
Crosswind Component					
Runway Object Free Area (ROFA)					
Length beyond runway end	R	1,000 ft	1,000 ft	1,000 ft	1,000 ft
Length prior to threshold		500 ft	500 ft	500 ft	500 ft
Width	C	600 ft	600 ft	600 ft	600 ft
Runway Obstacle Free Zone (ROFZ)					
Length	P	600 ft	600 ft	600 ft	600 ft
Width	Q	800 ft	800 ft	800 ft	800 ft
Precision Obstacle Free Zone (POFZ)					
Length					
Width					
Approach Runway Protection Zone (RPZ)					
Length	L	1,700 ft	1,700 ft	1,700 ft	1,700 ft
Inner Width		1,010 ft	1,010 ft	1,010 ft	1,010 ft
Outer Width		29,465	29,465	48,978	78,914
Acres					
Departure Runway Protection Zone (RPZ)					
Length	L	1,700 ft	1,700 ft	1,700 ft	1,700 ft
Inner Width		1,010 ft	1,010 ft	1,010 ft	1,010 ft
Outer Width		29,465	29,465	29,465	29,465
Acres					
Runway Separation					
Runway centerline to:					
Parallel runway centerline	H	250 ft	250 ft	250 ft	250 ft
Holding Position		300 ft	300 ft	300 ft	300 ft
Parallel taxiway/taxiway centerline	D	300 ft	300 ft	300 ft	300 ft
Aircraft parking area	G	400 ft	400 ft	400 ft	400 ft
Helicopter touchdown pad					

Note:
- Values in the table are rounded to the nearest foot. 1 foot = 0.305 meters.
Runway Length

<table>
<thead>
<tr>
<th>Airplane Weight Category MTOW</th>
<th>Design Approach</th>
<th>RWY Length</th>
</tr>
</thead>
<tbody>
<tr>
<td>12,500lbs (5,670kg) or less</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Approach speeds less than 30kt</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Approach speeds of at least 30kt but less than 50kt</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Approach speeds of 50kt or more</td>
<td></td>
<td></td>
</tr>
<tr>
<td>With less than 10 passengers</td>
<td></td>
<td></td>
</tr>
<tr>
<td>With or more 10 passengers</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Over 12,500lbs (5,670kg) but less than 60,000lbs (27,200kg)</td>
<td>Family grouping of large airplanes</td>
<td>5325-4B 12~15p.</td>
</tr>
<tr>
<td>60,000lbs (27,200kg) or more Regional Jets</td>
<td>Individual large airplane</td>
<td>Airplane Manufacturer Websites</td>
</tr>
</tbody>
</table>
Runway Orientation
Runway Orientation
Runway Design - ICAO

Twice as RWY Width

Requirement 90m

Recomm: 240m for Code 3&4
Runway Design Standard - ICAO
Runway Design Standard - ICAO

Aeroplane Reference Field Length

<table>
<thead>
<tr>
<th>Code #</th>
<th>Reference Field Length</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>~800m (~2625ft)</td>
</tr>
<tr>
<td>2</td>
<td>8001200m (26253937ft)</td>
</tr>
<tr>
<td>3</td>
<td>12001800m (39375906ft)</td>
</tr>
<tr>
<td>4</td>
<td>1800m~ (5906ft~)</td>
</tr>
</tbody>
</table>
Categories for Greatest Main Gear Span and Wingspan

<table>
<thead>
<tr>
<th>Code #</th>
<th>Wingspan</th>
<th>Main gear span</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>~15m (~49ft)</td>
<td>~4.5m</td>
</tr>
<tr>
<td>B</td>
<td>1524m (4979ft)</td>
<td>4.5~6m</td>
</tr>
<tr>
<td>C</td>
<td>2436m (79118ft)</td>
<td>6~9m</td>
</tr>
<tr>
<td>D</td>
<td>3652m(118171)</td>
<td>9~14m</td>
</tr>
<tr>
<td>E</td>
<td>52~65m(171)</td>
<td>9~14m</td>
</tr>
<tr>
<td>F</td>
<td>65m~(214)</td>
<td>14~16m</td>
</tr>
</tbody>
</table>
Example Runway Design Categories

<table>
<thead>
<tr>
<th>Aircraft</th>
<th>FAA</th>
<th>ICAO</th>
</tr>
</thead>
<tbody>
<tr>
<td>C172S</td>
<td>A-I</td>
<td>1A</td>
</tr>
<tr>
<td>ERJ-145</td>
<td>C-II</td>
<td>4B</td>
</tr>
<tr>
<td>B737-800</td>
<td>D-IV</td>
<td>4C</td>
</tr>
</tbody>
</table>
Previous Studies about RWY Excursion Modeling
Considered Database

<table>
<thead>
<tr>
<th>Country</th>
<th>Database name</th>
<th>Report 3 (OR/US)</th>
<th>Report 51 (SEPAR)</th>
<th>Report 107 (VO)</th>
</tr>
</thead>
<tbody>
<tr>
<td>United States</td>
<td>FAA AIDS</td>
<td>O</td>
<td>O</td>
<td>O</td>
</tr>
<tr>
<td></td>
<td>ASRS</td>
<td>O</td>
<td>O</td>
<td>O</td>
</tr>
<tr>
<td></td>
<td>NTSB</td>
<td>O</td>
<td>O</td>
<td>O</td>
</tr>
<tr>
<td>Canada</td>
<td>TSB</td>
<td>O</td>
<td>O</td>
<td>O</td>
</tr>
<tr>
<td>Australia</td>
<td>ATSB</td>
<td>O</td>
<td>O</td>
<td>O</td>
</tr>
<tr>
<td>France</td>
<td>BEA</td>
<td>O</td>
<td>O</td>
<td>O</td>
</tr>
<tr>
<td>United Kingdom</td>
<td>AAIB</td>
<td>O</td>
<td>O</td>
<td>O</td>
</tr>
<tr>
<td>New Zealand</td>
<td>TAIC</td>
<td>O</td>
<td>O</td>
<td>O</td>
</tr>
<tr>
<td>Ireland</td>
<td>AAIU</td>
<td>O</td>
<td>O</td>
<td>O</td>
</tr>
<tr>
<td>Spain</td>
<td>CIA/IAAC</td>
<td>O</td>
<td>O</td>
<td>O</td>
</tr>
<tr>
<td>Indonesia</td>
<td>NTSC</td>
<td>O</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Netherland</td>
<td>NASB</td>
<td>O</td>
<td></td>
<td></td>
</tr>
<tr>
<td>-</td>
<td>MITRE</td>
<td>O</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ICAO (International)</td>
<td>ADREP</td>
<td>O</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Singapore</td>
<td>AAIBS</td>
<td></td>
<td>O</td>
<td>O</td>
</tr>
<tr>
<td>South Africa</td>
<td>SACAA</td>
<td></td>
<td>O</td>
<td>O</td>
</tr>
<tr>
<td>Netherland</td>
<td>DSB</td>
<td></td>
<td></td>
<td>O</td>
</tr>
</tbody>
</table>
ACRP Report 3 and 107

<table>
<thead>
<tr>
<th>Common data</th>
<th>Report 3 (OR/US)</th>
<th>Report 107 (VO)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Purpose of flight</td>
<td>Ceiling</td>
<td>Tailwind</td>
</tr>
<tr>
<td>Aircraft weight (MTOW)</td>
<td>Electrical storm</td>
<td>Rain</td>
</tr>
<tr>
<td>Foreign O/D</td>
<td>Terrain</td>
<td>Gust</td>
</tr>
<tr>
<td>Visibility</td>
<td></td>
<td>Fog</td>
</tr>
<tr>
<td>Crosswind</td>
<td></td>
<td>Log criticality factor</td>
</tr>
<tr>
<td>Snow</td>
<td></td>
<td>Night conditions</td>
</tr>
<tr>
<td>Icing condition</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hub/Non-hub</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Previous Model

\[
P\{\text{Accident Occurrence}\} = \frac{1}{1 + e^{-(b_0 + b_1 X_1 + b_2 X_2 + \cdots)}}
\]

\(X_i\): independent variables;

\(b_i\): regression coefficients
Previous Model

\[\sum b_n \]

\[= -13.088 + 1.682 \text{(User Class G)} - 0.770 \text{(Acft Class A/B)} \\
- 0.252 \text{(Acft Class D/E/F)} + 2.143 \text{(Visibility < 2SM)} \\
- 0.091 \text{(Xwind 2 – 5kt)} + 0.653 \text{(Xwind 5 – 12kt)} + 2.192 \text{(Xwind > 12kt)} \\
+ 0.066 \text{(Twind 5 – 12kt)} + 0.98 \text{(Twind > 12kt)} + 0.558 \text{(Temp < 5C)} \\
- 0.453 \text{(Temp 5 – 15C)} + 0.291 \text{(Temp > 25C)} + 2.67 \text{(Icing)} - 0.126 \text{(Rain)} \\
+ 0.548 \text{(Snow)} - 0.103 \text{(Frozen Precipitation)} - 0.036 \text{(Gust)} + 1.74 \text{(Fog)} \\
- 2.517 \text{(Turboprop)} - 0.334 \text{(Foreign OD)} + 4.318 \text{(Log Criticality Factor)} \\
- 1.36 \text{(Night)} \]
Example

\[\sum b_n \]

\[= -13.088 + 1.682(1) - 0.770(0) - 0.252(1) + 2.143(0) - 0.091(0) \]
\[+ 0.653(0) + 2.192(0) + 0.066(0) + 0.98(0) + 0.558(0) - 0.453(0) \]
\[+ 0.291(0) + 2.67(0) - 0.126(0) + 0.548(0) - 0.103(0) - 0.036(0) \]
\[+ 1.74(0) - 2.517(0) - 0.334(0) + 4.318 - 1.36(0) = -7.34 \]

\[P\{\text{Accident Occurrence}\} = \frac{1}{1 + e^{-b_0 + b_1X_1 + b_2X_2 + \ldots}} = \frac{1}{1 + e^{-(-7.34)}} = 0.0006486 \]

If a smaller aircraft with MTOW less than 12,500lbs is operated on clear (visibility greater than 10SM), wind calm and warm (temperature 20°C) during daytime, the probability of runway excursion is 0.065%.
Actual Accident & Incident Data
Previous Models

- Commercial operation focused models
- Weather condition was significant factor for the model
- General aviation have different characteristics
 Ex) Runway size, aircraft type, preferred weather, …
NTSB Aviation Accident Database & Synopses

- Operated by NTSB
- Searched with “Runway Excursion”
- Most of the cases are accidents
- 425 cases were collected
- The oldest case was in 1991 May
ASRS

- Operated by NASA
- Searched with “Runway Excursion”
- Most of the cases are incidents
- 179 cases were collected
- The oldest case was in 2006 August
FAA AIDS

- Operated by FAA
- Searched with “Excursion”
- Most of the cases are incidents
- 39 cases were collected
- The oldest case was in 1988 October
How/what data were collected

- Both the synopsis and narrative are searched with the keyword
- Search period: Acc/Inc before Sep.2015
- Total: 648 cases
Collected variables

- Event type
- Airport
- Aircraft model – MTOW
- FAR Part
- Purpose of flight
- Phase
- Damage
- Fire
- Visibility (Flight rules condition, visibility in SM)
- Ceiling (Coverage, height in ft)
- Light condition
- Wind (Direction, speed, cross/tailwind, gust/windshear/turbulence)

- Runway (Length, width, pavement material, condition, obstacle on threshold/end)
- Excursion direction
- Pilot (Age, flight hour, student)
- Injury severity
- Causal factors & Expected primary factor
- Result of excursion
Data Analysis

• Total: 648 cases

Event Type
- Accident: 235 (36.5%)
- Incident: 413 (63.5%)

Aircraft Damage
- Destroyed: 121 (18.8%)
- Substantial: 402 (62.5%)
- Minor: 3 (0.5%)
<table>
<thead>
<tr>
<th>Category</th>
<th>Removed case #</th>
<th>Most common</th>
<th>Second common</th>
<th>Third common</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Factor</td>
<td>Cases</td>
<td>%</td>
</tr>
<tr>
<td>Aircraft Weight</td>
<td>81</td>
<td>MTOW≤12,500lbs</td>
<td>505</td>
<td>89.9%</td>
</tr>
<tr>
<td>FAR Part</td>
<td>5</td>
<td>Part 91</td>
<td>556</td>
<td>87.1%</td>
</tr>
<tr>
<td>Mission</td>
<td>72</td>
<td>Personal</td>
<td>358</td>
<td>62.7%</td>
</tr>
<tr>
<td>Phase</td>
<td>23</td>
<td>Landing</td>
<td>461</td>
<td>74.4%</td>
</tr>
<tr>
<td>Fire</td>
<td>20</td>
<td>None</td>
<td>620</td>
<td>99.5%</td>
</tr>
<tr>
<td>Flight Rules Condition</td>
<td>65</td>
<td>VMC</td>
<td>558</td>
<td>96.5%</td>
</tr>
<tr>
<td>Light Condition</td>
<td>73</td>
<td>Day</td>
<td>517</td>
<td>90.7%</td>
</tr>
<tr>
<td>Visibility</td>
<td>127</td>
<td>5<VIS≤10</td>
<td>465</td>
<td>90.3%</td>
</tr>
<tr>
<td>Ceiling Coverage</td>
<td>239</td>
<td>None</td>
<td>316</td>
<td>78.2%</td>
</tr>
<tr>
<td>Ceiling Height</td>
<td>162</td>
<td>None</td>
<td>316</td>
<td>65.7%</td>
</tr>
<tr>
<td>Wind Speed</td>
<td>180</td>
<td>3<Wind≤10</td>
<td>281</td>
<td>60.7%</td>
</tr>
<tr>
<td>Gust/Turbulence/ Windshear</td>
<td>-</td>
<td>No Info (No wind event)</td>
<td>544</td>
<td>84.6%</td>
</tr>
<tr>
<td>Cross/Tailwind</td>
<td>-</td>
<td>No Info (No X/Twind)</td>
<td>524</td>
<td>81.2%</td>
</tr>
<tr>
<td>Precipitation</td>
<td>-</td>
<td>None+No Info</td>
<td>609</td>
<td>93.7%</td>
</tr>
<tr>
<td>Any precipitation</td>
<td>-</td>
<td>None</td>
<td>609</td>
<td>93.7%</td>
</tr>
<tr>
<td>RWY Length</td>
<td>230</td>
<td>2500<Length≤5000</td>
<td>210</td>
<td>50.8%</td>
</tr>
<tr>
<td>RWY Width</td>
<td>232</td>
<td>75<Width≤100</td>
<td>126</td>
<td>30.7%</td>
</tr>
<tr>
<td>Contaminated RWY</td>
<td>230</td>
<td>Asphalt</td>
<td>330</td>
<td>76.6%</td>
</tr>
<tr>
<td>RWY Condition</td>
<td>282</td>
<td>Good</td>
<td>260</td>
<td>72.0%</td>
</tr>
<tr>
<td>Friction Aids</td>
<td>203</td>
<td>None</td>
<td>339</td>
<td>77.0%</td>
</tr>
<tr>
<td>Excursion Direction</td>
<td>90</td>
<td>Left</td>
<td>254</td>
<td>45.9%</td>
</tr>
<tr>
<td>Pilot Age</td>
<td>251</td>
<td>35<Age≤60</td>
<td>181</td>
<td>46.2%</td>
</tr>
<tr>
<td>Student Pilot</td>
<td>180</td>
<td>Non-Student</td>
<td>390</td>
<td>84.2%</td>
</tr>
<tr>
<td>Flight Hours</td>
<td>215</td>
<td>1000<FH≤5000</td>
<td>126</td>
<td>29.4%</td>
</tr>
<tr>
<td>Causal Factor</td>
<td>21</td>
<td>Human Factor</td>
<td>520</td>
<td>52.4%</td>
</tr>
<tr>
<td>Result</td>
<td>21</td>
<td>Loss of control</td>
<td>326</td>
<td>34.6%</td>
</tr>
</tbody>
</table>
Data Analysis

Aircraft weight

- 90% Less than 12,500
- 5% Greater than 12,500 and less than or equal to 50,000
- Greater than 50,000 and less than or equal to 100,000
- Greater than 100,000
Data Analysis

FAR Part

87%

91
103
121
135
137
141
Data Analysis

Mission

- Personal: 63%
- Instructional: 20%
- Passenger: 6%
- Business: 6%
- Aerial Application: 6%
Data Analysis

Phase

- Landing: 74%
- Takeoff: 19%
- Taxi
- Approach
Data Analysis

Aircraft Damage

- Substantial: 64%
- Minor: 20%
- None: 16%
- Destroyed: 0%
Data Analysis

Flight Rules Condition

- VMC: 97%
- IMC: 3%
- Marginal: 0%
Data Analysis

RWY Length

- 12% for Length <= 1000
- 29% for 1000 < Length <= 2500
- 51% for 2500 < Length <= 5000
- 2% for 5000 < Length <= 8000
- 2% for 8000 < Length <= 10000
- 2% for Length > 10000
Data Analysis

RWY Width

- Width <=60: 16%
- 60<Width<=75: 25%
- 75<Width<=100: 31%
- 100<Width<=150: 26%
- 150<Width<=200: 26%
Data Analysis

Pavement Condition

- 72% Good
- 18% Fair
- 8% Poor

Legend:
- Excellent
- Good
- Fair
- Bad
- Poor
Data Analysis

Friction Aids

- None
- Grooved
- Porous friction courses
- Aggregate friction seal coat
- Rubberized friction seal coat
- Seal Coat Separating

21%
77%
Data Analysis

Obstacle location

- None: 24%
- Both: 57%
- THLD: 8%
- End: 11%
Data Analysis

Pilot Age

- Age < 25: 5%
- 25 <= Age < 40: 16%
- 40 <= Age < 60: 40%
- 60 <= Age: 39%
Data Analysis

Flight Hour

- 29% for FH<=80
- 16% for 80<FH<=200
- 13% for 200<FH<=500
- 12% for 500<FH<=1000
- 11% for 1000<FH<=5000
- 10% for 5000<FH<=10000
- 9% for 10000<FH

The pie chart shows the percentage distribution of flight hours across different intervals.
<table>
<thead>
<tr>
<th>Category</th>
<th>Removed case #</th>
<th>Most common</th>
<th>Second common</th>
<th>Third common</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Factor</td>
<td>Cases</td>
<td>%</td>
<td>Factor</td>
</tr>
<tr>
<td>MTOW & FAR Part</td>
<td>5</td>
<td>MTOW≤12,500 & FAR Part 91</td>
<td>472</td>
<td>84.4%</td>
</tr>
<tr>
<td>Phase & Mission</td>
<td>75</td>
<td>Landing & Personal</td>
<td>275</td>
<td>48.4%</td>
</tr>
<tr>
<td>Visibility & Visibility condition</td>
<td>138</td>
<td>5<VIS≤10 & VMC</td>
<td>455</td>
<td>90.1%</td>
</tr>
<tr>
<td>Ceiling height & Ceiling coverage</td>
<td>240</td>
<td>None & None</td>
<td>316</td>
<td>78.4%</td>
</tr>
<tr>
<td>Visibility & Precipitation</td>
<td>242</td>
<td>5<VIS≤10 & None</td>
<td>359</td>
<td>88.0%</td>
</tr>
<tr>
<td>Friction aids & Pavement condition</td>
<td>282</td>
<td>None & Good</td>
<td>188</td>
<td>52.1%</td>
</tr>
<tr>
<td>Student & Pilot age</td>
<td>253</td>
<td>Non-student & 60≤Age</td>
<td>150</td>
<td>38.5%</td>
</tr>
<tr>
<td>Excursion direction & Obstacle presence</td>
<td>245</td>
<td>Left & Both</td>
<td>107</td>
<td>26.9%</td>
</tr>
<tr>
<td>Wind event & Excursion direction</td>
<td>90</td>
<td>No Info & Left</td>
<td>187</td>
<td>33.8%</td>
</tr>
<tr>
<td>Pilot age & Causal factor</td>
<td>262</td>
<td>60≤Age & Human factor</td>
<td>108</td>
<td>28.3%</td>
</tr>
<tr>
<td>Flight hour & Causal factor</td>
<td>216</td>
<td>1000≤FH<5000 & Human factor</td>
<td>83</td>
<td>19.4%</td>
</tr>
<tr>
<td>Result & Causal factor</td>
<td>51</td>
<td>Loss of control & Human factor</td>
<td>201</td>
<td>21.3%</td>
</tr>
<tr>
<td>Category</td>
<td>Removed case #</td>
<td>Most common Factor & RWY Width</td>
<td>Cases</td>
<td>%</td>
</tr>
<tr>
<td>---------------------------------------</td>
<td>----------------</td>
<td>--------------------------------</td>
<td>-------</td>
<td>---</td>
</tr>
<tr>
<td>RWY Length & Width</td>
<td>232</td>
<td>2500<Length≤5000 & 60<Width≤75</td>
<td>85</td>
<td>20.7%</td>
</tr>
<tr>
<td>Primary factor & RWY Width</td>
<td>233</td>
<td>Human factor & 75<Width≤100</td>
<td>92</td>
<td>22.4%</td>
</tr>
<tr>
<td>Excursion Direction & RWY Width</td>
<td>249</td>
<td>Left & 75<Width≤100</td>
<td>51</td>
<td>12.9%</td>
</tr>
<tr>
<td>Primary Factor & RWY Width</td>
<td>233</td>
<td>Human factor & 75<Width≤100</td>
<td>92</td>
<td>14.3%</td>
</tr>
<tr>
<td>Obstacle Presence & RWY Width</td>
<td>232</td>
<td>Both & 60<Width≤75</td>
<td>69</td>
<td>16.8%</td>
</tr>
<tr>
<td>Pavement Condition & RWY Width</td>
<td>283</td>
<td>Good & 60<Width≤75</td>
<td>81</td>
<td>22.5%</td>
</tr>
<tr>
<td>Pilot Age & RWY Width</td>
<td>272</td>
<td>60≤Age & 75<Width≤100</td>
<td>46</td>
<td>12.1%</td>
</tr>
<tr>
<td>Flight hour & RWY Width</td>
<td>265</td>
<td>1000<FH≤5000 & 75<Width≤100</td>
<td>36</td>
<td>9.5%</td>
</tr>
<tr>
<td>Wind Event & RWY Width</td>
<td>232</td>
<td>No Info & 75<Width≤100</td>
<td>89</td>
<td>21.7%</td>
</tr>
</tbody>
</table>
Runway Centerline Deviation Study
Purpose
Investigate the severity of deviation of taking off or landing aircraft in general aviation

How we could get deviation data
• Use 4 Velodyne LiDAR sensors (Scan angle: 30 degree)
• To expand the Field of View (FOV)
 Each sensor faces different directions
 Two sensors were paired as one group and installed on a runway lighting system pillar
• Each pillar was placed on the side of Runway Safety Area (RSA)
Point cloud

- Video -
*Analyzed by Zoltan Koppanyi
Conclusion
RWY Excursion Model for GA Airport

- General aviation have clearly different characteristics from commercial operations

- Previous models considered weather condition significantly, however, it may not affect GA flights as much as for commercial flights

- Based on the model for general aviation airport and centerline deviation data, current runway design standards can be re-evaluated
Future Work

• More data collection of aircraft deviation
• Development of frequency model for general aviation
• Data collection of runway excursion accidents from international accident database other than U.S
• Compare the difference of accidents regarding FAA & ICAO design standards
Thank you!