Representative Traffic Management Initiatives

Alex Estes, David Lovell, Michael Ball

University of Maryland-College Park

June 22nd, 2016
Finding Representative Data Points

- We take a large set of data
- Produce a small set of representative data points
- We may attach some information to each representative
- Representatives should be a good description of original data points
 - Data exploration
 - Allow users to better understand data
- Our application requires that each representative is a member of the original dataset
Traffic Management Initiatives (TMIs) are used by the Federal Aviation Administration to balance the availability of resources with their demand.

TMIs often have parameters such as:
- Number of flights allowed to access resource during restrictions
- Time interval that access to a resource is restricted
- Geographic region of flights included in TMI

We wish to produce representative TMIs so that TMI decision-makers can more easily review historical TMIs.
In air traffic management literature, \(k \)-means cluster centroids have been used for a similar purpose:

- To create capacity scenarios (Liu, Hansen, and Mukherjee 2008)
- To find types of days based on Ground Delay Program occurrence (Grabbe, Sridhar, and Mukherjee 2013)
- To generate TMI scenarios for use in simulations (Delgado, Prats, and Sridhar 2013)

For general problem: clustering is the nearest methodological analogue.

- General resources: Jain, Murty, and Flynn 1999; Tan, Steinbach, Kumar, et al. 2006, Chapter 8
Clustering vs. Finding Representatives

- Goal of clustering: partition data into sets
- Cluster representatives may be produced but this is an intermediate step
- Clustering algorithms that produce representatives can also be applied to find representatives
Clustering vs. Finding Representatives

- Goal of representatives: find representatives
- A clustering may be generated from the representatives, but that is not the intent.
- If you removed all data except representatives, should still have reasonable idea of how data falls
Clustering vs. Finding Representatives

One example: data falls in single cluster of irregular shape.

- Can accurately describe this data as a single-cluster, but this does not provide much information about the distribution of the data.
- Representatives provide a way to describe this dataset that does not rely on cluster structure.
Assume we have something which tells us whether or not two observations are similar.

We will choose a set R of representative observations to satisfy the following:

1. If an observation is not a representative then it is similar to at least one representative in R
2. R is of minimum size
Graph theoretic formulation

- Similarity graph G: node for each observation, edges between similar observation.
- We are looking for a set of nodes $R \subseteq V(G)$ such that
 - Every node of $V(G) \setminus R$ is adjacent to a node of R.
 - R is of minimum size.
- Note: not necessarily unique
- A solution to this problem is a minimum dominating set (MDS)
Minimum Dominating Set Solution

- Minimum dominating set is a well-known NP-hard problem
- IP formulation for exact solution:

$$\min \sum_{v \in V(G)} x_v$$

s.t.

$$x_v + \sum_{u \in N(v)} x_u \geq 1$$

$$x_v \in \{0, 1\}$$

- Approximate methods that produce small dominating sets have also been proposed (Parekh 1991, Sanchis 2002, Ho, Singh, and Ewe 2006)
Consider if we have distance $d(x, y)$ between points x and y instead of similarity information.

We can choose some distance threshold D and say that two points are similar if their distance is at most D.

The we could apply our MDS method.
If D is small enough, then no pair would be similar, and every point is a representative.

As D increases, more pairs become similar, and the number of representatives in the MDS method decreases.

If D is large enough, any pair will be similar, and the MDS method will produce a single representative.
Given a number k, we can find the smallest distance threshold D^* such that there are at most k representatives. This is equivalent to the k-center problem, where we place k facilities to minimize the maximum distance that any customer must travel. A clustering method has been proposed where this problem is solved approximately to find cluster centers (Gonzalez 1985).
Solving the k-center problem

- The k-center facility location problem is also NP-Hard.
- There are existing exact methods (Chen and Chen 2009; Elloumi, Labbé, and Pochet 2004; Caruso, Colorni, and Aloï 2003; Ilhan, Özoys, and Pinar 2002; Minieka 1970).
- There are existing approximate methods and heuristics (Davidović et al. 2011; Robič and Mihelič 2005; “Lexicographic local search and the p-center problem”; Caruso, Colorni, and Aloï 2003; Mladenović, Labbé, and Hansen 2003; Mihelič and Robič 2003; Hochbaum and Shmoys 1985; Gonzalez 1985).
Some representative will represent common data points, while others will represent outliers or unusual points.

We define a measure called *prevalence* to reflect this.

Prevalence is the proportion of observations that are similar to the representative.

If using k-center method, use similarity from final distance threshold.
Prevalence of Representatives

Notes:

- Since every observation is similar to a representative, the prevalences sum to at least one.
- An observation can be similar to multiple representatives, so the prevalences can sum to a number greater than one.
- The prevalence of a representative is an estimator of the probability that an observation will be similar to that representative.
- Under some regularity conditions, this can be shown to be a consistent estimator.
Disadvantages of k-means compared to proposed method:
- Does not produce centroids that are members of original dataset
- Can only be applied with Euclidean distance

Advantages of k-means compared to proposed method:
- Fast
- Has precedence in the literature
k-center vs. k-means

Other differences:

- **k-center (our method):** minimize maximum distance from any point to its nearest representative
- **k-means:** approximately minimize sum of squared distance from any point to its nearest representative
- Expect **k-means** to place some priority of high-density regions over low density regions
- Expect **k-center** to give more even coverage of data, and less affected by local variations in density.
- Similarly, expect **k-center** to be better for outlier detection.
- Could consider variations on our method with other objectives: e.g. minimize sum of absolute distance for even more priority on high-density regions.
Example: TMI planning

- Consider one specific type of TMIs: Ground Delay Programs.
- Scheduled traffic can exceed capacity of airport to handle arrivals.
- To prevent unsafe situations, the FAA will delay flights on the ground.
- This is a ground delay program (GDP)

<table>
<thead>
<tr>
<th>Time</th>
<th>Flights per Hour</th>
</tr>
</thead>
<tbody>
<tr>
<td>Capacity</td>
<td>Orange</td>
</tr>
<tr>
<td>Incoming Flights, No GDP</td>
<td>Blue</td>
</tr>
<tr>
<td>Incoming Flights, GDP</td>
<td>Green</td>
</tr>
</tbody>
</table>
GDP Features

- File Time
- Earliest/Latest Affected ETA
- Rates:

![Graph showing flights per hour over time of day with two vertical dashed lines at Earliest ETA and Latest ETA. The graph indicates a steady rate between the two lines.](image-url)
GDP Features:

Scope:

- Sometimes specified with numeric radius instead
Defining Distance

Difficulty: features have vastly different units.

- We want a measure of distance that remains interpretable, but includes all features
Defining Distance

Idea:
- Assume that for an individual feature f, we can find the distance between any pair of points in that feature.
- The distance between two observations x and y in feature f is relatively large if most pairs of observations have a smaller distance in that feature.
Feature-wise quantile distance:
- For each feature f, we can use the proportion of pairs of whose distance is at most that of the pair (x, y) as a normalized measure of distance for the pair (x, y) in the feature f.
- We can then define the overall distance between (x, y) as the maximum of this normalized distance in each feature.
Can express distance thresholds in terms of feature thresholds.
Distance between a pair is less than D if and only if normalized distance of each feature is less than D.
Can convert normalized distances back to distances in original features.
This allows us to present our results in a manner that is easily interpreted.
Ground Delay Program Example:

- Dataset: every GDP at Newark Liberty International Airport from January 1st, 2007 to December 31st, 2014
- Data taken from FAA Advisory Database (www.fly.faa.gov)
- In total: 1302 GDPs
- In order to examine the data visually, we focus on two features: average rate, and duration.
- We compare our method with three other clustering methods that produce representatives.
GDP Example:

Scatter plot of observations:
GDP Example:

Results from affinity propagation and mean shift:

(a) Affinity Propagation

(b) Mean Shift
GDP Example:

Results from k-center method and k-means clustering:

(a) k-center (proposed method)

(b) k-mean
Further work

- Incorporate this into decision-support tool
- Visualize results from higher-dimensions
- Use representatives in further analysis, e.g. estimating the effectiveness of TMIIs that are similar to a representative
- Heuristics for k-center in very large datasets
Thank you for your attention. Questions?

