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Abstract—Airlines in alliances expand the scope of their networks 

through code sharing, which allows an airline to sell seats on 

another airline’s flight as if the seats were its own. However, code 

sharing is problematic for airline revenue management (RM) 

systems. RM improves revenues by placing booking limits on the 

availability of lower fares in a market.  Alliance partners do not 

work together to determine seat availability for code share 

flights, producing asymmetric booking limits. Thus, seat 

inventory is sold for less than its value to the network, and 

revenues are lower. In this paper, we test whether alliance 

partners facing competition from another alliance benefit from 

using information about the estimated value of unsold seats on 

partner flights in their RM systems. It is found that alliance 

network characteristics and the behavior of the competition 

affect the performance of the two methods tested. Results from 

the simulation show that under favorable circumstances, benefits 

reach 0.43% if the alliance carries a large share of code share 

traffic at high fares and does not risk losing non-code share high 

fare traffic. Depending on network characteristics, the 

sophistication of the competition’s RM can decrease and even 

reverse revenue benefits. 

I. INTRODUCTION 

In the last 2 years, airline alliances have acquired a long list 
of new members, and few of the world’s remaining quality 
airlines—large or small—have not either joined an alliance or 
at least partner with other airlines. In the year 2013, alliances 
earned 67% of worldwide passenger airline revenue, and 
earned a revenue premium on the traffic they carried [14]. With 
alliances constantly searching for new members (or code share 
partners) to fill the gaps in their worldwide networks, they will 
continue to grow in size and importance. 

The three major alliances, oneworld, Star and SkyTeam, 
complete intensely on the world’s long-haul business routes. A 
major feature of alliance cooperation in providing good service 
in an important market is code sharing. Code sharing allows an 
alliance partner to sell seats on another airline’s flight as if they 
were flown by the selling partner. This allows partners to 
expand the scope of their networks to distant destinations they 
do not (or cannot) fly to. Thus, partners “virtually” connect 
distant points, serving global markets each would otherwise be 
unable to serve without having flying rights and deploying its 
own planes and personnel.  

Airlines use revenue management (RM) to attempt to 
optimize the revenue earned from available seats on the flights 

in their network. RM systems use availability control to place 
booking limits on the availability of certain fares in a market, 
or origin-destination pair (O-D). Restricting the sale of low 
fares later in the booking process (time window during which 
tickets are sold) improves revenues because tickets are sold at 
higher fares when customers have a higher willingness to pay. 
In the absence of alliances, an airline’s traffic consists of local 
traffic (when the passenger flies on one flight leg from his 
origin to his destination) and connecting (when he flies on 
multiple flight legs). An airline’s RM system only has access to 
information about the state of the airline’s own network. Thus, 
airlines cannot accurately evaluate booking limits for code 
share itineraries (which consist of flight legs operated by 
different partners) due to the lack of information about 
partners’ operated flight legs. 

Whether they are unable or unwilling, alliance partners do 
not work together to determine booking limits on code share 
flights. This often produces asymmetric booking limits on 
itineraries that involve code share flights. Thus, seat inventory 
is sold for less than its potential value to the network, and 
revenues are lower for the alliance. In this paper, we test 
whether it is beneficial for revenues if alliance partners facing 
competition from another alliance incorporate information into 
their RM system’s decision-making process about the 
estimated value of unsold seats on their partner’s operated 
flights, called “bid prices”.  

Two methods are examined. Bid price sharing (BPS) 
incorporates the bid prices into the decision process after 
booking limits have been determined for the airline’s own local 
and connecting itineraries. Dynamic valuation (DV) 
incorporates bid prices into the calculation of booking limits at 
the same time as other booking limits are determined, having a 
larger effect on booking limits on the airline’s own local and 
connecting fares. 

The goal of this paper is to test which method performs 
better for alliances with a network structure resembling that of 
the three global alliances, which have strong partnerships 
across the Atlantic. This paper addresses a potential research 
direction that follows from a previous paper [17], which tested 
the effects of BPS in a US-based alliance network with a very 
different structure. Also, this paper aims to gain insights into 
the performance of the two methods depending on the behavior 
of the competing alliance, and the network characteristics of 
the alliances. 



II. BACKGROUND 

This section provides background on alliance RM concepts 
important to the experiments in this paper. 

A. Three Types of Alliance Flight Traffic: Local, 

Connecting, and Code Share 

Figure 1 below illustrates three flight legs. Alliance partner 
1 operates the flights DEN-ORD and ORD-FRA, and also code 
shares on partner 2’s operated flight FRA-BUD. Partner 2 
operates FRA-BUD and also code shares on partner 1’s flight 
ORD-FRA. Various combinations of these flights comprise the 
three components of alliance flight traffic: 

In an own local itinerary, the passenger flies on one flight 
leg from his origin to his intended destination. The figure 
illustrates three possible local itineraries, DEN-ORD, ORD-
FRA, and FRA-BUD. 

In an own connecting itinerary, the passenger flies on 
multiple flight legs of a single airline from his origin to his 
intended destination. In this illustration, only one own 
connecting itinerary is possible: DEN-ORD-FRA on partner 1.  

In a code share itinerary, a passenger flies on multiple 
flight legs operated by different partners, but marketed under a 
single airline’s code, i.e., sold by that airline. In this 
illustration, a passenger may purchase the code share itinerary 
ORD-FRA-BUD from either partner 1 or partner 2, because 
both partners sell the itinerary under their operating codes. 

 

Figure 1.  Components of Alliance Flight Traffic. 

B. Alliance Revenue Management  

Alliance RM consists of the following four components, 
described below: recording and forecasting, code share 
valuation, seat allocation (or optimization), and code share 
availability control. This paper’s assumptions regarding the 
RM characteristics in the experiments are also stated. 

An airline’s RM system draws on a historical database of 
prior bookings to forecast future demand by fare class and O-D 
market. Recording and forecasting of bookings refers to how 
airlines record accepted bookings for later use in forecasting. 
Full information of the code share booking is needed from the 
booking agent (such as a Global Distribution System), in order 
to know the full itinerary and distinguish it from a local 
booking when making future forecasts. This paper assumes that 
alliance partners record the full itinerary and forecast code 
shares separately from locals.  

An airline sets fares (which range from low to high, 
depending on the booking class) for the local and connecting 
itineraries it offers for sale. These fares are provided as input to 
the RM system (along with demand forecasts) for calculating 
booking limits. Less straightforward, however, is the value an 
airline should attribute to a code share itinerary. Code share 

valuation refers to the value used as input to the RM seat 
allocator optimization model. The possibilities include using 
the total fare of the code share itinerary, the local fare of the 
partner’s own traversed flight leg (both total and local 
valuation overvalue the code share itineraries), a proration of 
the total fare, or the novel method of DV. In this experiment, 
we use local valuation of code share itineraries, as 
representative of current airline practices, for all tests that do 
not involve dynamic valuation. Figure 2 presents an example of 
the valuation of ORD-FRA-BUD. In this example, local 
valuation values the itinerary at $700, whereas DV values it at 
$650, both higher than the O-D fare.  

 

Figure 2.  Example of code share local/dynamic valuation. 

Airlines then determine how many seats on a flight leg to 
make available for sale. Seat availability is restricted through 
booking limits on low fares in an O-D market. Booking limits 
are calculated during seat allocation (or optimization). The 
RM system may use optimization that is leg-based (optimizing 
revenues on an individual flight leg) or O-D/network based 
(aiming to optimize revenues over the entire network by 
considering flight leg opportunity costs). Expected Marginal 
Seat Revenue (EMSRb) developed by Belobaba [1, 2, 3], is the 
leg-based method used in this paper. The heuristic calculates 
the expected revenue from an empty seat on a flight leg and 
allows a booking to be made if the fare exceeds the EMSR.  

The two network-based methods used in this paper are 
Displacement Adjusted Virtual Nesting (DAVN) and 
Probabilistic Bid Price (ProBP). In DAVN, a network linear 
program produces shadow prices that represent the opportunity 
costs of filling the last empty seat on a flight leg (for more 
information, see [22]). Note that, if the airline flight leg is not 
booked to near capacity, most shadow prices produced by the 
deterministic linear program of DAVN are zero. However, as 
bookings on the flight leg reach capacity, these shadow prices 
quickly approach an expensive fare on that flight leg. The RM 
optimizer uses the total O-D fare less a flight leg’s shadow 
price to determine which O-D fares involving a flight leg to 
make available for sale. If a leg shadow price is small, the 
estimated network value of selling the seat will be higher. 
Thus, a seat on that flight leg is more likely to be available for 
booking at a low fare. Because it uses multiple fare level 
ranges (called “buckets”) to determine open/closed booking 

 

 



availability, DAVN is a robust network RM method, with 
results less sensitive to small variability in historical input data 
or demand forecasting methods. However, it is still a heuristic. 

ProBP optimally prorates the total O-D fare to the affected 
flight legs using an iterative algorithm.  The values of the last 
and marginal seats on a flight leg are calculated. These EMSR 
values are prorated to the flight legs comprising the itinerary 
until convergence is reached (more information in [8]). The 
resulting prorated EMSR values are the “bid prices” of the 
affected flight legs. Theoretically more optimal than DAVN, 
this method is also more sensitive to inputs and forecasts. It can 
perform worse than DAVN, especially at low demand levels or 
when there is high demand variability. This paper tests using 
BPS or DV when the alliance partners both use symmetric 
DAVN or ProBP, and when the competing alliance uses 
EMSR, identical RM, or identical RM with BPS or DV. 

RM methods all produce some estimate of the value of an 
unsold seat, which we refer to, without loss of generality, as 
“bid prices”. Figure 3 below summarizes the characteristics of 
the three RM methods tested in this paper, and the types of bid 
prices generated. 

 

Figure 3.  Characteristics of the RM methods EMSRb, DAVN, and ProBP. 

The RM system must decide which code share itineraries 
are available at which fare, referred to as code share 
availability control. These include bid price sharing control 
(proposed by [9]) and standard availability control, when code 
share booking limits are determined inside the RM optimizer, 
during the seat allocation step. Importantly, the code share 
valuation inputs may differ.  If local valuation is used, code 
shares are “worth as much” to the network as own local 
bookings. With standard control using DV, code shares are 
treated as distinct from locals because they receive a different 
valuation, which may be lower or higher than the local 
valuation. With BPS, standard availability control with local 
valuation is used to calculate bid prices. Bid prices are then 
shared by partners to inform seat availability decisions after 
booking limits have been determined for own local and 
connecting itineraries [15].  

C. Description of the Passenger Origin-Destination 

Simulator 

The Passenger Origin-Destination Simulator (PODS) is a 
software simulation developed at The Boeing Company in the 
mid-1990s by Hopperstad, Berge and Filipowski [13]. It is 
used in this research to test the effects of sharing seat value 
information among alliance partners. Two underlying models 
within PODS represent the processes of passenger choice and 
airline RM systems, which interact at the levels of seat 
allocation and passenger choice/decision [6]. The software 

simulates the booking process into 16 time frames covering 63 
days prior to flight departure. At the start of each time frame, 
seat allocation is reoptimized based on bookings to date. Each 
simulation trial consists of 600 weeks, or samples. To eliminate 
bias from any initial conditions, the first 200 samples are 
discarded. An average of the remaining 400 samples gives the 
simulation trial output, and ensures small standard deviation of 
the results. The PODS Research Consortium at MIT uses the 
software to test the effects of different revenue management 
techniques on airlines. Participation from 9 airlines gives the 
Consortium a perspective that is oriented to the realities and 
operating constraints faced by airlines today.  

D. Prior Work on Alliance Revenue Management 

Booking limits on code share itineraries are sub-optimal 
because the seats in the network are not being allocated as if 
they were part of one network, and each partner does not have 
full knowledge about the state of the other’s system. One 
simulation result estimates that network RM should improve 
revenues by 1.0-1.8%, but if code share traffic is present, the 
gains drop to 0.5-0.7% [14]. This loss can be exacerbated 
because code shares are often long-haul international routes 
with high revenue contribution. Therefore, prior research in the 
field of operations research has attempted to address the 
problem of alliance revenue management and propose optimal 
solutions [7, 12, 15, 17, 18, 20, 21, 23, 24]. 

Some solution approaches involve modifying the valuation 
of code share itineraries [15, 17, 18, 23]. Findings in [23] show 
that the performance of static valuation schemes is nearly as 
good as the best dynamic schemes (achieving about 90% of  
revenues), but that static schemes do not adjust well as network 
parameters change, which could rapidly reduce revenues. The 
network in [23] consists of just two flight legs with ten seats 
each, in which the proportion of code share itineraries was 
varied. In [15, 17, 18], it is found that DV using dated partner 
bid prices performs slightly better than BPS in a complex US-
based network with constant network parameters.  

An option that could achieve optimal joint revenues, 
suggested by both [7] and [21], is to exchange seats among the 
alliance partners until the relative values of the seats to each 
airline's network are equal. After the seats are exchanged and 
paid for among the carriers, each airline has individual control 
over the seats by its own RM system. In [7], this proposition is 
formulated in terms of marginal seat values, and in [21] in 
terms of bid prices, but the idea is the same. In the proposed 
scenario, the resource allocation is optimal and expected 
revenue for the alliance can be maximized. However, in 
practice, airlines do not calculate bid prices or expected seat 
revenues for seats on flights that they do not operate, as they do 
not have access to the booking histories and forecasts for those 
non-operated flights. Significant technological changes to the 
airlines' RM systems and antitrust immunity may be required 
before such a scheme could be implemented. 

Applying finance theory, [12] proposes an options-based 
approach to capacity control on a single flight leg, where the 
marketing carrier can purchase options from the operating 
carrier for the right to buy seat inventory in the future at a pre-
determined strike price. No theoretical basis or evidence is 

 



presented that this scheme performs better than the other 
methods proposed in the literature. In [20], a deterministic LP 
model inspired by that in [22] is developed, similar to the 
approach of DAVN. The LP is solved over the joint alliance 
network, and then the constraints linking the partners' decisions 
to the joint alliance network solution are relaxed through the 
dual prices, thus decomposing the problem into smaller 
problems by airline.  

Under BPS control, a code share itinerary is available for 
booking if the fare exceeds the sum of the bid prices on all the 
legs traversed. It was proposed in [9] that airlines either 
exchange either actual bid prices (if they have the legal ability 
to do so), or to infer bid prices from the lowest available fares, 
an idea re-iterated in [21] in order to inform one another of the 
value of seat inventory on code share flight legs. Bid price 
inference may be a feasible option for airlines that do not have 
the antitrust immunity to share such information. The small-
scale simulations in [23] show that bid price control produces 
gains just as good as those of the dynamic transfer price 
schemes in the cooperative game of complete information. 

III. METHODS AND EXPERIMENT SETUP 

A. Characteristics of PODS Alliance Network E  

Network E represents two competing alliances, each with 
partner hubs across the Atlantic. A schematic of network E is 
illustrated in Figure 4. The two competing alliances have one 
set of partners (airlines 1 and 2) whose hubs are located in the 
central United States, while the other two partners (airlines 3 
and 4) have hubs located in Europe. Airlines 1 and 3 form 
alliance 1, and airlines 2 and 4 make up alliance 2. The spoke 
cities emanate from the continental hubs, with 10 in the 
northern part and 10 in the southern part of Europe, as well as 
10 in the western part and 10 in the eastern part of the United 
States. In the baseline case for network E, all airlines use 
EMSRb with leg forecasting.  

 

Figure 4.  Trans-Atlantic Network E. 

Roughly speaking, network E has a dumbbell structure. The 
hub-to-hub trunk routes (served by large aircraft) carry a large 
amount of passengers across the Atlantic into the hubs and feed 
the smaller hub-to-spoke routes. Such trunk flights occur three 
times a day, providing connecting opportunities during three 
banks. The routes are served by each airline, resulting in a total 
of six hub-to-hub flights and 12 additional trans-Atlantic flights 
per bank. In addition, some local and connecting traffic does 
not cross the Atlantic, but traverses spoke-to-hub and hub-to-

spoke routes, staying on the same continent. Also, there are 
hub-bypass routes crossing the Atlantic that go from a 
continental hub to a major city on the other continent, without 
requiring a connection at the partner hub. The different types of 
routes ensure that the network is varied and representative of 
current alliance networks.  

B. Bid Price Sharing for Code share Availability Control 

BPS refers to any process of partners exchanging network 
displacement cost information, or the estimated value of selling 
one item of seat inventory on a flight leg. If the seat allocation 
method used by the RM system is DAVN, then the resulting 
bid prices are actually shadow prices from a deterministic 
linear program for each leg on an airline’s own network. The 
total code share fare (CSfare) must exceed the sum of the 
minimum threshold of the lowest open fare range “bucket” and 
the partner’s shadow price (SP). This must be satisfied for both 
partners, known as “dual control”. The BPS availability control 
equation is: 

t

partner

t
SPBucketCSfare  min . (1) 

With PROBP, iterative optimal proration of fares produces 
bid prices for each leg. The availability control equation upon 
BPS is: 

t

partner

t

own BPBPCSfare  . (2) 

Figure 5 shows an illustration of the BPS controls using 
DAVN or ProBP. 

 

Figure 5.  DAVN and ProBP Code Share Control Comparison. 

In the above equations, the partner’s bid price is the most 
recent available. The experiments described in this paper use 
daily optimization for ProBP and daily calculation of shadow 
prices for DAVN (though booking limits on fare buckets are 
recalculated at the start of each of 16 time frames). Prior 
experiments with reoptimization every time frame and every 
200 bookings are described in [17] and [18]. As part of the 
experiments described in this paper, less frequent optimization 
was also tested.  Exactly as before, it was found that more 
frequent optimization slightly improves results for ProBP, and 
largely for DAVN. The bid prices more accurately reflect the 
state of the network, thus the RM systems produce more 
optimal booking limits and more revenue is generated. Because 

 

 



the results were so similar, this paper only shows the results 
using daily reoptimization.  

This paper thus assumes that airlines have the technological 
capability to reoptimize, exchange bid prices, and incorporate 
partner bid prices into their RM system (with DV) on a daily 
basis. It is acknowledged that a range of capabilities exist 
among today’s airlines, some with integrated systems and real 
time communication among parent airlines and their 
subsidiaries, and more rudimentary communication between 
other alliance partners. BPS and DV require sharing 
information so quickly and frequently that they may require 
more advanced RM systems and communication technology on 
the part of the alliance members.  

C. BPS Availability Control vs Dynamic Valuation 

The key difference between BPS and DV is that BPS 
incorporates the bid prices into the decision process after 
booking limits have been determined for the partner’s own 
local and connecting itineraries. DV incorporates bid prices 
into the calculation of booking limits at the same time as other 
booking limits are determined, having a larger effect on 
booking limits on own local and connecting fares. 

With DV, the valuation of code shares is dynamic because 
it is changing with every RM reoptimization. Recall that with 
BPS, the value of a code share itinerary used as input to partner 
1’s RM optimizer is the same as a local online fare of a 
passenger flying only partner 1’s flight legs. In DV, the code 
share valuation used as input to the optimizer (CSvaluation) is 
the total code share fare (CSfare) minus the most recent bid 
price from partner 2  

t

partner

t

own BPCSfareCSvalution  . (3) 

This resulting valuation can be lower or higher than local 
valuation, depending on the bid prices and code share fare. 
Refer to figure 2 for an example of dynamic valuation. The 
results using DV in [15] are very encouraging and show 
revenue gains near to those of BPS for code share availability 
control in DAVN systems, and much better results in ProBP 
(about a 0.25% revenue gain for DAVN and ProBP). It is 
argued that improved performance of ProBP under dynamic 
valuation is a result of the sensitivity of the ProBP optimization 
to fare inputs. This paper continues the examination of 
dynamic valuation in a different network setting, with the 
exchange of current bid prices and more frequent optimization 
from that used in [15], with  results indicating more 
complicated conclusions.  

D. Dimensions Tested in Experiment 

The focus of this paper is alliance revenue management in a 
competitive environment, which previous research has not 
addressed. We also test the benefits of BPS or DV when the 
alliance uses the differing network RM methods of DAVN and 
ProBP. Although tests were performed to compare daily 
optimization with optimization once per time frame, the results 
are similar to prior findings that show that daily optimization 
largely benefits DAVN, and are not shown. The alliance may 
face a competing alliance that uses either EMSR, the same 

network RM method, or the same network RM method in 
combination with BPS or DV. Two different demand levels are 
tested to understand how the demand level affects the 
performance of each method. The aim is to gain insights into 
the performance of BPS compared with DV in different 
competitive and network environments. Table 1 provides a 
summary of the dimensions tested in the experiment. 

TABLE I.  SUMMARY OF EXPERIMENT DIMENSIONS 

Experiment: 1 2 3 4 5 6 

Alliance 1 DAVN ProBP EMSRb DAVN ProBP 

Alliance 2 EMSRb DAVN ProBP DAVN ProBP 

Code share 

valuation 
Local and Dynamic Valuation 

Availability 

Control 

Standard control with local or DV, or  

Bid Price Sharing  

BPS Frequency Daily exchange of bid prices 

Demand Level High (86-88%) and medium (82-83%) load factor 

 

IV. RESULTS 

A. Alliance 1 Uses BPS or DV, Alliance 2 Does Not 

Figure 6 shows the results obtained when alliance 1 uses 
BPS or DV under different demand levels. Under medium 
demand, DV leads to the highest revenue gains for both DAVN 
and ProBP. However, ProBP with BPS performs better than 
DV at high demand. When the competitor also uses ProBP, the 
pattern of gains over standard ProBP is similar, but smaller. 

With DAVN for alliance 1 and EMSRb for the competitor, 
BPS does not improve revenues at the medium demand level. 
At high demand, gains occur from both BPS and DV. When 
the competitor uses DAVN as well, the order of gains from 
BPS and DV remains the same, but all methods produce 
revenue gains at both medium and high demand levels because 
of a beneficial competitive feedback effect. 

 

Figure 6.  Alliance 1 uses BPS or DV, Alliance 2 does not. 

The revenue gains are still present for alliance 1 even when 
alliance 2 uses network RM as its revenue management method 
rather than EMSRb. However, the resulting revenue gains are 
smaller when the competitor uses a more intelligent RM 
system. 

 



B. Alliance 2 Uses BPS or DV, Alliance 1 Does Not 

Figure 7 below shows that alliance 2, using ProBP at any 
demand level, and DAVN at high demand, also benefits from 
BPS when the competitor uses EMSR, but less than the benefit 
for alliance 1. When the competition uses network RM, the 
revenue gains are generally smaller than they were for alliance 
1 as well. Also, note that alliance 2 benefits less from network 
RM in general, compared with alliance 1, due to the fact that it 
carries a higher proportion of local traffic than alliance 2. 
Alliance 2 benefits less from DV than BPS, the opposite of the 
effect on alliance 1. 

 

Figure 7.  Alliance 2 uses BPS or DV, Alliance 1 does not. 

C. Both Alliances Use BPS or DV, High Demand Only 

Figure 8 shows the results obtained when both alliances use 
BPS or DV, at high demand only. Alliance 1 retains a revenue 
gain from BPS and DV. The gain for alliance 2, in this 
situation, is very minor with BPS. DV, however, causes losses 
for alliance 2 when its competitor also uses DV.  

 

Figure 8.  Both alliances use BPS or DV, high demand only. 

D. Discussion of Differences between Alliances 1 and 2  

We have seen that BPS with dual control is the only 
method that consistently helps both alliances. BPS works best 
for alliance 2 in all cases, while DV works best for alliance 1. 
This is because the network characteristics of the 2 alliances 
differ: code share average fares are lower for alliance 2 than for 
alliance 1, and average local fares are higher. Also, locals 
comprise the largest proportion of revenues for alliance 2, and 
code shares a smaller proportion, as compared with alliance 1. 
The lower code share fares combined with the higher local 
fares causes alliance 2 to experience spiral down (this occurs 
when the RM system undervalues seats and opens too many 
low fares for booking) when using DV. Alliance 1 does not 
experience a revenue decline because of different network 
characteristics: higher code share fares, lower local and 
connecting fares, and higher revenue share from code shares.  

 

Figure 9.  Average component fares for alliances 1 and 2. 

Figure 9 illustrates the average component fares for 
alliances 1 and 2, and shows how the average fares change 
after the application of ProBP, and additionally BPS and DV. 
Code share fares increase more for alliance 1 than for alliance 2 
when applying network RM and further alliance RM 
techniques. Connecting fares increase much more for alliance 2 
than alliance 1, making that component more important for 
revenues. When DV is used by alliance 2, subtracting the 
already higher bid prices (resulting from the higher local fares 
of alliance 2) from the lower code share fares causes spiral 
down and harms revenues. Too many code share bookings are 
allowed at the expense of high-revenue local and connecting 
itineraries. This does not occur for alliance 1 because of its 
inherently higher code share fares and lower local fares. 

V. DISCUSSION 

A. Conclusions 

In network E, which differs from US-based network A4 
(used previously in this body of research in [15, 17, 18]) in 
terms of its physical structure, the properties of the types of 
flights (short-haul local and domestic connecting, along with 
long-haul international code share flights), and the benefits of 
BPS and DV, depend on the network characteristics to a larger 
degree. If code share flights are high-revenue relative to local 
itineraries, then BPS and DV improve revenues by raising bid 
prices (ProBP) or improving booking limits (DAVN). These 
benefits are more pronounced, and do not affect the revenues 
from the other traffic components, when code share itineraries 
comprise a larger proportion of revenues. If, however, the 
airlines in an alliance do not obtain the majority of revenues 
from code share traffic and the average code share fare is 
relatively low compared with the average local fare, then the 
potential danger of displacing a local passenger and causing 
revenue loss presents a problem for implementing BPS and 
DV. 

The benefits from BPS and DV are present in most cases 
for alliances of differing structure, and they are larger if the 
competition is using less sophisticated RM methods. 
Additionally, if two competing alliances differ in their network 
characteristics such that one carries higher-revenue code share 
passengers and obtains a large amount of revenues from that 
component, then it could experience a larger benefit from BPS 
and DV to the detriment of the competitor. The results indicate 

 

 

 



that the frequent optimization of bid prices and booking limits 
may be particularly important in networks with a large 
difference in the lengths of their sets of flight legs, intense 
competition between two alliances, and fare structures that are 
prone to spiral down. 

B. Future Research Directions 

The two networks, A4 [15, 17, 18] and E, used in this body 
of research had specific network structures that resulted in 
somewhat different conclusions about the performance of BPS 
and DV. Expanding this research to networks of various other 
structures, and with other characteristics (e.g., the ratios of the 
average code share fare to local and connecting fares, and the 
proportions of revenue derived from the various traffic 
components) would help to compile a more holistic picture of 
the benefits of BPS and DV as a function of network structure. 

Some literature on the alliance RM topic [23] has modeled 
the effects of partners choosing which bid prices to post for 
their own flight legs to maximize their own individual 
revenues, assuming that that the posted bid price is equal to the 
“transfer price”, or the revenue that will receive from the 
operating partner if the itinerary is sold (revenues are not split 
according to a prorate agreement in this case). In addition to 
this “partner price” scenario, it is possible that some degree of 
bid price scaling (either up or down), in certain cases, would 
produce better availability decisions. A topic for further 
research is the effect on total alliance revenues of modifying 
bid prices for either mutual or individual benefit. 

This paper was concerned with the combined alliance 
revenues and has assumed that the revenue resolution contracts 
are fixed and have been negotiated such that each partner views 
his share as a fair division. Another direction for future 
research is to examine the effects of different revenue 
resolution schemes or prorate agreements between alliance 
partners on the behavior and incentives of individual 
participants. Some airlines use fare adjustment (also called 
“marginal revenue optimization”), which decreases the fare 
inputs to the optimizer of lower class itineraries [11]. Some bid 
prices will be much lower if using fare adjustment. The 
performance of BPS may be significantly different if airlines 
are using this method. An idea suggested by [9] is that of bid 
price inference, where the lowest available fare on a flight leg 
is used as a pseudo-bid price. If actual bid prices are skewed 
downwards because of techniques like fare adjustment, then 
using lowest available fares may be a feasible alternative. Bid 
price inference is also applicable in the case when airlines do 
not have antitrust immunity to share bid prices, in which case 
communicating to each other the lowest available fares (which 
are public and would not require immunity) is still possible. 
Research on the success of BPS when using pseudo-bid prices, 
because it is unsuitable or infeasible to exchange actual bid 
prices, is another topic of interest. 

We have seen that DAVN performs well as a network RM 
method because its composition of multiple heuristics makes it 
robust, and alone (without BPS) it produces large revenue 
gains even without frequent optimization. However, in the 
network E environment, applying BPS or DV to DAVN with 
time frame optimization resulted in large revenue losses. The 

work of [15] showed that a different, stricter implementation of 
BPS in DAVN resulted in better performance. Because DAVN 
comprises multiple heuristics, it may require airline-specific 
tweaking to obtain maximum performance. Further research 
into the adjustments needed to improve the performance of 
BPS in DAVN, and in what situations such adjustments are 
appropriate, would be of practical importance. 

Also of practical importance to the industry is to test BPS 
and DV with different RM combinations that are not limited to 
the O-D control methods of DAVN and ProBP. We have tested 
various network and leg RM combinations in another network 
(A4), but it is important to continue this research for networks 
of varying structures as well, and confirm whether BPS with 
dual airline control remains the only method that consistently 
delivers revenue gains, though marginal in some cases. To the 
author's knowledge, most of the airlines in alliances are only 
just taking the first steps towards sharing bid price information 
and incorporating it into their code share availability decisions.  

A major limitation of the models and methods proposed in 
the literature thus far is that they were tested on relatively small 
and simple hypothetical networks. Other than this research, the 
author is unaware of literature that also examined the 
performance of alliance RM in a competitive alliance 
environment. Once such alliance RM systems are in place as 
those proposed here and in the literature, data documenting the 
code share availability decisions and actual mechanisms used 
by airlines in real world competitive and network scenarios can 
be collected. The success of the various methods proposed here 
and elsewhere in the literature can then be validated according 
to real airline data. 

C. Implications for Airlines 

The results show that airlines in alliances who are 
considering sharing information about the value of seats on 
their flight legs should carefully consider their network 
structure and competitive environment before deciding to 
implement such methods into their availability control. If the 
network structure and competitive environment are conducive 
to obtaining large benefits from sharing bid price information, 
then large benefits will compound over time, outweighing the 
one time expense and technological complexity of 
implementation. Gains over $75 million per year can be 
obtained by a large airline that participates in an alliance such 
as American Airlines (assuming an approximate percent 
revenue gain of +0.30%) [14]. 

Although DV can produce the largest revenue gains for an 
alliance, particularly when code shares are a valuable and 
important part of the bookings and when the competitor uses 
less advanced RM, it is also more costly or difficult to 
implement because it requires modification of the RM system’s 
valuation procedure. BPS, on the other hand, allows the RM 
system to function unmodified, and requires a real time test by 
both partners after own booking limits have been determined. 
Thus, BPS may be easier for airlines to implement. Although 
BPS does not always provide the highest revenue gains, the 
results in this paper showed that it is a more robust method for 
airlines whose network structures make them more susceptible 
to spiral down when they use DV (such as alliance 2). Whether 



BPS or DV is a worthwhile investment is ultimately for airlines 
to decide. 

In an industry with tiny profit margins and huge costs, 
small revenue benefits can make a big difference. This research 
has shown that alliance partners can cooperate and share their 
bid prices, whether they take the form of prorated expected 
values of empty seats on flight legs, or network displacement 
costs approximated as shadow prices from a deterministic LP, 
to attempt to improve the total alliance revenues. Through the 
use of bid price sharing for post-fact code share itinerary 
availability control, or by dynamically valuing the code share 
itinerary's revenue contribution in the network optimizer, 
airlines in alliances can improve their revenues and affirm the 
benefits of entering into code sharing agreements. 
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