Turnaround prediction concept: proofing and control options by microscopic process modelling

GMAN proof of concept & possibilities to use microscopic process scenarios as control options

Bernd Oreschko, Thomas Kunze, Tobias Gerbothe and Hartmut Fricke
Chair of Air Transport Technology and Logistic, Technische Universität Dresden, Germany

ICRAT 2014
Chair of Air Transport Technology and Logistics

Research Activities

• Trajectory Management
 • Uncertainty in 4D-Trajectories
• Safety & Security Assessment
 • Simulation Based Risk-Analysis
• Terminal Operations
• Expert knowledge exchange
• Airport & Terminal Operations
 • Turnaround prediction and steering
 • Pushback and Deicing Management
• Other
Motivation & Background

2. Research Review

3. Turnaround Prediction Modell GMAN

4. Process Controlling by Microscopic Modelling

5. Conclusion & Outlook
Background - ACDM

EUROCONTROL Airport Collaborative Decision Making
Improves situational awareness and rises efficiency by
- Better information connection and sharing for all airport partners
- Therefore better capacity use when information is used correctly

⇒ Establishing Milestone concept

Impacts for the Turnaround:
- Prediction of
 - Target Off Block Time (TOBT) & Turnaround Time (TTT)

HOW? => knowing process characteristics for all process and interconnections and control options
Motivation Turnaround Uncertainty

Uncertainty of start and duration cause of several factors, e.g. delays, extended sub-process duration, airport type or staff skills.

Deterministic TA-Planning does not work

Best Guessing by Ramp and Ops Agents does not fit in 4D/ACDM Environment
Motivation – Modelling for DST

The Turnaround within adjacent ATM-tools inline with EUROCONTROL perspective:
AMAN – Arrival Management Tool
DMAN – Departure Management Tool
SMAN – Surface Management Tool

Turnaround Modell Output useful for SMAN and DMAN
Motivation – new DST for Turnaround - GMAN
Motivation – new DST for Turnaround - GMAN

The GMAN output may be used in ramp operations control or schedule planning the following ways:

• Perform **Critical path** analysis of TA process
• Analyze **expected buffers** between processes constituting a TA event
• Identify non-achievable **target times** at earliest times
• Identify **excessive process durations**.
Motivation & Background

Research Review

Turnaround Prediction Modell GMAN

Process Controlling by Microscopic Modelling

Conclusion & Outlook
Turnaround Research findings by TU-Dresden

- Field measurements and data analysis on several airports (MUC, FRA, STR, HAM, DRS, LEJ) show a discrepancy between scheduled and actual times:
 - Actual Turnarounds don’t fit fixed plans
 - Process durations and buffers influenced by
 - Delays
 - Airport (category)

=> Staff Skills

Example Process
Variations due to Airport Category & Delay - Unloading

Delay influences on process durations & buffers

A319
Turnaround
Plan, source: Airbus SAS

Reality
TUD Turnaround Researches

- The sub-processes comprising a TA should be modeled stochastically as they have uncertainty associated with their processes duration.

- The TA process is dependent on various parameters like airport category and operational factors (e.g. passenger number, airline, aircraft type), and these information can be obtained from different sources.

- **Incoming delay** has an important influence on the individual sub-process duration and process interaction times (buffers).

- See ICRAT Contributions of last years – and others: www.ifl.tu-dresden.de
TTT Prediction and Controlling – Two Step Approach

1. Prediction of TTT and Process Duration with stochastics
 • => comparison with other target times (e.g. TSAT)
2. Control Options by microscopic task simulation
 • => possible handling options

Dipl. Ing. Bernd Oreschko

GMAN
TTT Prediction

Mircoscopic
Process
Simulation

Target Time
comparison
e.g.: cTTT = TSAT ?

Control Option 1
Control Option ..
Control Option n
GMAN – Process Description

• Prediction is based on single process description and their interaction results

• **Described Processes:**
 • deboarding, catering, fuelling, cleaning, boarding, unloading, loading (other possible)

• **Processes description:**
 • Each of these process duration and Start time is stochastically described

• **Description source:**
 • empirical data from aircraft operators, airports and ground handling companies are used

- influence of the following parameters:
 • Aircraft type
 • Airline
 • Airport inbound and outbound
 • Airport where the TA is processed
 • Flight distance to destination
 • Flight type, i.e. low cost or legacy
 • **Incoming delay** (on gate)
 • Number of passengers inbound and outbound
 • Type of aircraft stand
GMAN – Critical Path Calculation

Repeated n-times

Critical Path

GMAN critical path calculation for one run out of n - with stochastic process start times and duration description
GMAN – Stochastic Process Description

• Finally, probability distribution functions can be fitted to the collected/empiric data. The Turnaround Modell is designed to allow using any distribution functions, while
 • Deterministic (fallback level) and
 • Weibull distribution fit best.

Further more arrays of single notifiable times can be used

• Output for GMAN: Qantiles

Possible Output for DST-Tool GMAN: Qantiles

Reliability ⇔ Accurateness
A higher prediction accuracy level requires more reliable information for better stochastic process description.

As the LAT decreases, more accurate trigger information is expected to become available, and therefore a more specific stochastic process description out of the empirical database can be gathered and fitted.
GMAN Prototyp

![Ground Handling Prototype](image)

Simulation runs: 1000
Controller type: None

<table>
<thead>
<tr>
<th>Time Interval</th>
<th>Simulation</th>
</tr>
</thead>
<tbody>
<tr>
<td>15 min</td>
<td>40%</td>
</tr>
<tr>
<td>30 min</td>
<td>45%</td>
</tr>
<tr>
<td>45 min</td>
<td>50%</td>
</tr>
<tr>
<td>60 min</td>
<td>55%</td>
</tr>
<tr>
<td>75 min</td>
<td>60%</td>
</tr>
<tr>
<td>90 min</td>
<td>65%</td>
</tr>
</tbody>
</table>

Deboarding

- Mean: 3.1654561301447182
- Median: 3.0007030070300704
- 75% quantile: 3.5007030070300704
- 95% quantile: 4.0007030070300704
Proof of Concept (POC) at LEJ Airport

- LEJ is a medium sized airport with mainly domestic and European flights
- Modification of the GMAN model due to the lack of necessary date (no Timestamps at the a/c)
 - start and end times of deboarding, fuelling, unloading, loading and boarding were adjusted, s/aIBT and s/aOBT also available
 - => adoptions to GMAN model
- No catering and cleaning process (minimum amount of occurrences of these processes on the critical path in LEJ)
- Aim of POC:
 - Does the GMAN gives a usable TTT prediction

Overview LEJ Airport PAX Facilities
Source: airportzentrale.de
POC at LEJ Airport – Empiric Data Source

Preparation of Empiric Data (>10.000 data) from IFL Database

1. all TA with a scheduled TTT (SOBT-SIBT) above 2 hours were skipped => # 8.150
2. Data class preparation by trigger information:
 • airline => main, charter and low-cost classes
 • aircraft type by the maximum seats available =>
 eg. ac100- (up to 100 seats), ac156 (101 up to 156 seats)
 • passenger numbers inbound / outbound by cluster of 2:
 eg. pax25 (0 -25 passengers), pax50 (26-50 passengers)
3. creation of classes for start times and durations, regarding the trigger information
 • boarding, deboarding, loading and unloading:
 1. aircraft type
 2. corresponding passenger number class
 • Fuelling
 1. aircraft type
 2. the destination airport
POC at LEJ Airport

- GMAN connected to the local airport information network
 - Only final trigger information => no intermediate steps => no LAT analysis

- Data analysis for 600 turnarounds in 09/2013

- Output of the GMAN:
 - stochastic values of TTT for a single TTT
 - Mean, μ, δ

- Manual match of predicted TTT and ATTT by operational staff

=> Questions:

- Does the prediction cover with the reality?
- Indications to what should be the target values for the GMAN output?
POC at LEJ Airport - Output

Deviation of ATTT to GMAN TTT prediction, all flights

- No clustering by trigger information
- No good prediction
 => Clustering necessary
POC at LEJ Airport – Output

Deviation of ATTT to GMAN TTT prediction, A319 to CGN and STR

- Lowcost Turnaround (25 min)
 => Simple/stable TA, acceptable prediction
1 Motivation & Background
2 Research Review
3 Turnaround Prediction Modell GMAN
4 Process Controlling by Microscopic Modelling
5 Conclusion & Outlook
Turnaround – Process Charts

- Developing process chart to cover all elementary steps of turnaround processes
- Dividing process into tasks,

Overall TA → Relevant steps of aircraft catering
Example: Microscopic Cleaning Model

- Identification of significant cleaning steps: remove, clean, restock, arrange for seats, lavatories, galleys, vacuum

- Define sequence of steps using different scenarios (sequence, staff usage), as different control options
Cleaning – Progress

Progress of each cleaning step using expected value of duration

Remarkable inter-process dependencies, not easy to cover with analytical description
TTT Simulation with Microscopic Processes

- Simulation shows anticipated behavior
- Next step is to prove the usability in live environment
Motivation & Background

Research Review

Turnaround Prediction Modell GMAN

Process Controlling by Microscopic Modelling

Conclusion & Outlook
Conclusion and Outlook

• Proof of concept of TTT Prediction is confirmed
• The different levels do not generally imply that the TA process time prediction will get smaller by default (or even show a smaller variation)
 • But the reliability of the results increases

• **GMAN principle proofed:**
 • Identify non-achievable target times (at earliest times)
 • Identify excessive process durations
 • Output with quality information

• **Next Step:**
 • Test and Validation of control options (in LEJ)
Bernd Oreschko
Chair of Air Transport Technology and Logistic
Technische Universität Dresden, Germany
oreschko@ifl.tu-dresden.de