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Abstract— Optimized Profile Descent (OPD) is an arrival 
procedure for the Next Generation Air Transportation System 
(NextGen), which has been demonstrated to effectively decrease 
noise, emissions and fuel costs. Reference [1] identifies optimal 
sequencing and spacing policies for OPD operations under 
uncertainty and shows that the use of these policies at given 
metering points is expected to result in potential savings of 10-
15% in fuel consumption over the current OPD practice. In this 
paper, we develop models to further increase such potential 
savings through optimal metering policies, which include 
identification of the optimal number and locations for such 
metering points. We present an algorithmic framework based on 
implementations of a stochastic dynamic program and a 
nonlinear stochastic integer program to identify best metering 
point configurations, and present some numerical results based 
on actual traffic information at a major U.S. airport.  

Keywords- runway operations; optimized profile descent; 
continuous descent arrival; stochastic dynamic programming  

I.  INTRODUCTION  

Optimized profile descent (OPD), which is also referred to 
as the continuous descent arrival or continuous descent 
approach (CDA), is a distinct arrival procedure proposed for 
aircraft landings at airports, which has been demonstrated to 
effectively decrease noise, emissions and fuel costs. Different 
from the conventional stair-step procedure, OPD flights 
descend continuously from the top of descent (TOD) and 
attempt to reduce level stay, as shown in Fig. 1. The main 
advantage of OPD is that, compared to an aircraft that uses the 
conventional approach, an OPD flight will stay at a higher 
altitude for longer time which in turn will reduce noise, 
emissions and fuel burn. However, the management of OPD 
flights is more difficult for a controller due to the reduction in 
level segments - especially given the uncertainty in aircraft 
trajectories. Such management is performed through a set of 
metering points, where spacing between flights is adjusted as 
necessary to ensure safety and efficiency during the approach 
to the runway. Reference [1] has identified optimal spacing 
policies for OPD operations under uncertainty and shows that 
the use of these policies is expected to result in potential 
savings of 10-15% in fuel consumption over the current 
practice. On the other hand, it is clear that the number and 
location of metering points greatly affect the variance of the 
uncertainty in flight trajectories, and thus have a significant 
role in defining the realized maneuvering costs. To this end, in 

this paper we seek answers to the following research questions: 
what is the optimal number of OPD metering points, and what 
are their optimal locations such that all relevant costs are 
minimized, while maximizing runway utilization? We develop 
an algorithmic framework to answer these questions, in which 
multiple stochastic model implementations are utilized. Some 
preliminary results are also presented that quantify the potential 
savings that can be achieved through the proposed optimal 
metering policies.  

 
Figure 1.  Comparison of OPD with the conventional stair-step approach 

II. BACKGROUND AND GENERAL FRAMEWORK 

A. Background 

The existing analyses and literature on metering point 
locations are limited. Reference [2] points out that convective 
weather results in inaccuracy in traffic management tools, 
reducing the effectiveness of decisions at metering points. 
Thus, they integrate weather information within a traffic 
management advisor and provide some proactive suggestions 
on decisions at metering points under adverse weather. Similar 
to that paper, we aim at exploring decision support issues at 
metering points. We also emphasize that weather conditions 
might bring trajectory deviations and provide a stochastic 
formulation which captures the uncertainty brought by weather 
and pilot performance. The concept of using a set of metering 
points to monitor and adjust aircraft spacing during OPD, 
which also forms the basis for our framework, was first 
discussed by [3]. In that paper, the authors propose a cueing 
system where a sequence of altitude/speed checkpoints was 
added to recommend flap schedules to pilots. A simulator 
based experiment suggests significant benefits of having such 
metering points to OPD operations from the perspective of 
both controllers and pilots. While [3] attempts to find the 
number of metering points to use based on their survey data, 



they do not explore any optimization based approaches. 
Overall, to the best of our knowledge, our paper is the first that 
aims to identify the optimal locations of metering points. In 
addition, our analyses constitute one of the few stochastic 
optimization models for OPD procedures.  

B. Decision Framework 

In current practice, there exist several way points that can 
be used for guidance and direction purposes along the 
trajectory during an OPD procedure. Some of the way points 
are used as metering points, where the aircraft is controlled so 
that the runway spacing is ensured at desired levels or the 
lower end air traffic conflicts can be resolved. However, the 
locations of these way points are mostly based on expert 
opinions or general conventions, and do not result from 
optimization procedures. It is possible that fuel savings can be 
obtained by optimally selecting the number and locations of 
these control points. Moreover, given that the existing way 
point locations at airports are basically virtual locations in air, 
modification of these locations does not require a huge 
infrastructure effort or cost.  

Hence, the general decision process that we consider in this 
paper can be described as follows: The decision maker, i.e. the 
air traffic control authority, initially decides on the number and 
locations of metering points for a given airport. This is a one-
time decision and applies to all flights, although the locations 
can be adjusted during the day if practically feasible. From an 
implementation perspective, when an aircraft reaches a 
metering point, the distance from the aircraft it trails is 
observed, and any spacing adjustment decisions are made by 
the controller. The process can continue for each existing 
metering point until the flight lands at the runway. This 
framework can be represented through a multi-stage decision 
structure, where the number and location decisions are made 
first, followed by a series of spacing adjustment decisions at 
the selected metering point locations after observations on 
stochastic spacing realizations are made. However, the fact that 
the number of metering points is a decision by itself, and that it 
also determines the number of decision epochs, implies a 
complex endogenous structure which is difficult to model in a 
tractable way. Hence, as part of our analyses, we decouple the 
decisions for the number and locations of the metering points, 
and develop an algorithmic procedure that would determine the 
best configuration to use to minimize associated costs.  

C. Algorithmic  Setup 

As part of the decision process, we assume that the arrival 
rate and distribution of aircraft types are known for a given 
airport. Similarly, the TOD location and thus its distance from 
the runway are also known. In addition, the information on 
trajectory uncertainty is assumed to be available in the form of 
a probability distribution as described by [1]. The costs of 
maneuvering during different phases of flight and utilization of 
runway are also assumed to be predefined as described in 
Section III. The overall goal is to find the number and 
corresponding locations of metering points so that the resulting 
fuel burn and runway utilization costs are minimized.  

An overview of the algorithmic procedure we use to 
achieve this is shown in Fig. 2 through two distinct phases.   

 
Figure 2.  Algorithm to find ideal number and locations of metering points 

In the first phase, we iteratively search for the estimated 
optimal number of metering points through a Markov decision 
process (MDP) model as described in [1]. In that paper, we 
develop a stochastic dynamic programming model to obtain 
optimal sequencing and spacing policies for arriving aircraft so 
that fuel burn, environmental and runway utilization costs are 
minimized. The corresponding optimal savings are also 
reported based on a fixed number of metering points. In this 
paper, we obtain the optimal savings iteratively for different 
numbers of metering points by initially assuming equal 
spacings in between. The optimal number of metering points is 
obtained when the marginal savings are sufficiently negligible 
as a larger number of points is considered. In each iteration of 
the first phase of the algorithm, we solve the MDP model for 
the given aircraft mix by considering all possible pairs of 
aircraft types, and obtain the expected savings corresponding to 
that number of metering points. We stop after identifying a 
sufficiently ‘good’ number of metering points, and use that as 
input for the second phase of the algorithm.  



In the second phase, we use the given number of metering 
points and solve a multi-stage stochastic program (SP) to 
identify the optimal locations for these points with the 
objective of cost minimization. The key constraints in the 
model involve the dynamics of the spacing changes between 
adjacent metering points, which also involve stochastic 
parameters defining trajectory uncertainty. As part of the 
implementation, we again consider all aircraft pairs, and solve 
the SP model for each aircraft pair with random initial spacing 
values. After the optimal locations of metering points for each 
aircraft pair are obtained, the ideal locations are calculated 
using weights based on the probability of each aircraft pair. In 
the following sections, we describe the SP model in detail. 

III. SP MODEL FOR OPTIMAL METERING LOCATION 

For a given OPD implementation, suppose the distance 
between the TOD and the runway is denoted as ܮ, while flights 
arrive at the airport following a Poisson distribution with rate 
 When an aircraft approaches the TOD, the initial spacing .ߣ
between that flight and the one preceding it is measured as ݏ଴. 
Furthermore, we assume that there are ܰ metering points 
located along the trajectory, where the first and last ones are the 
TOD and the runway, respectively. Each metering point is 
indexed as ݐ, where ݐ	 ൌ 	1,2, . . . , ܰ. We further define the 
location of metering point t as ݕ௧, where ݕଵ ൌ 0 and ݕே ൌ  by ܮ
definition. The distance between adjacent metering points is 
defined as ݀௧, i.e. ݀௧ ൌ ௧ାଵݕ	 െ  ௧. When a trailing aircraftݕ
reaches metering point ݐ, the spacing from the leading aircraft 
is measured and denoted as ݏ௧. Then, a target spacing change 
for the next metering point, ∆௧, is issued to the pilot. Due to 
safety concerns and technical limitations, there are lower and 
upper bounds for ∆௧, denoted as Δ௧ and Δഥ௧, respectively. The 
realized spacing at metering point t+1 follows a normal 
distribution based on the spacing at the previous metering point 
and the issued spacing change command, i.e.,	ݏ௧ାଵ ∼
ܰሺμ௧ାଵ, ௧ାଵߤ ௧ାଵሻ, whereߪ ൌ Δ௧ ൅ ௧ݏ௧݌ ൅ ௧݀௧ݍ ൅  ௧ andݎ
௧ାଵߪ ൌ ௧݀௧ߟ ൅ ,௧݌ .௧ߞ ,௧ݍ ,௧ݎ  ௧ are coefficients to expressߞ ௧ andߟ
the mean and standard deviation of the realized spacing as 
described by [1]. Due to wake vortex effects, the air traffic 
control authority requires a minimal separation requirement at 
the runway for any given pair of aircraft, denoted as ݏே.  

Based on this setup, the model utilizes three types of cost 
components as part of the objective function definition. These 
are fuel burn costs, costs for violation of minimum spacing 
requirements, and runway utilization costs. Fuel burn costs 
relate to the fuel consumption during the landing process, and 
are separately defined for the cruise and descent phases of a 
flight during the landing process [4]. Letting ݖ௧ ൌ ݀௧ ൅ ∆௧	, the 
cruise stage fuel burn cost can be defined as: 
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for ݐ ൌ 1, … , ௖ܰ, where ௖ܰ is the number of metering points in 
cruise stage, and ܿ௜, i=0,1,…,12 are constants defined by [4], 
some of which are utilized in the relationships below. The 
descent fuel burn cost, on the other hand, can be defined as  
ௗ݂ሺݕ௧, ∆௧ሻ ൌ min	ሼ ௡݂௢௠, ௠݂௜௡ሽ, where for ݐ ൌ ௖ܰ, … , ܰ: 
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Costs for violation of minimum spacing are used to ensure 
spacing change commands such that the risk of separation 
requirement violation is minimized. This cost, defined 
as	 ௖݂ሺݏ௧ሻ, is evaluated based on the huge cost of aircraft 
colliding with each other and the probability of a collision 
given a spacing	ݏ௧ as defined by [5]. The cost function is 
defined for all the metering points as: 

௖݂ሺݏ௧ሻ ൌ 950080 expሾሺെ1.0412ݏ௧ െ 0.5806ሻ݈10݃݋ሿ.  (4) 
Runway utilization costs are determined by the difference 
between final realized spacing and minimal separation at 
runway, and can be approximated in a linear fashion as 
௥݂ሺݏேሻ ൌ 72.3ሺݏே െ  .ேሻ, as defined by [6]ݏ

A. Model Formulation 

In this section we describe our multi-stage SP model where 
the locations of the metering points and spacing adjustment 
decisions are determined. The uncertainty in the framework is 
modeled through the variance of realized spacing. More 
specially, as mentioned in [1], the standard deviation of spacing 
is assumed to be a linear expression of the distance between 
metering points, i.e. ߟ௧	݀௧ 	൅  ௧ , where ݀௧ is the distanceߦ	
between adjacent metering points, while ߟ௧ and ߦ௧ are 
coefficients. Since ݀௧ is known and constant, after the location 
decision is made, possible realizations of the spacing at the 
metering point t are dependent on the random values of ߟ௧ and 
 be the set of vectors of all possible realizable values ߖ ௧. Letߦ
of ߟ௧	 and ߦ௧	 at different metering points. We refer to each 
possible realization ߰ ∈  as a scenario with a corresponding ߖ
probability	݌ట. Overall, the model aims to minimize the sum of 
the fuel, safety and utilization costs while determining the 
metering location and allocation decisions. The fuel cost 
function depends on metering locations and spacing 
adjustments while the runway utilization costs are described 

through	 ௥݂ሺݏே
టሻ. Given this, we formulate our described model 

as follows. Function (5) refers to the objective function where 
the expectation of all costs is minimized. Constraints (6) define 
bounds for the spacing adjustments while constraints (7) are 
used to define the spacing between aircraft at each metering 
point. Constraints (8) describe the sequence of metering points, 
while constraints (9) represent nonanticipativity.  
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B.  Convex Representation of the Model 

For the above stochastic formulation, we note that all the 
constraints are linear. Thus, the objective function (5) 
determines the convexity of the problem. The fuel burn cost 
functions ௖݂௥ , ௡݂௢௠ and ௠݂௜௡	are nonconvex due to inclusion of 
products of multiple variables, and thus the optimization 
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problem is nonconvex. Our approach to deal with this issue 
involves transforming these expressions through bilinear terms, 
which are then approximated through piecewise linear terms.  

For the cruise stage fuel cost functions (1), we define 

௧ܲ ൌ ሺܿସ ൅	ܿଶݕ௧ሻସ.ଶ଺, ܳ௧ ൌ 	 ௧ݖ ൅ ܿଵ	ݖ௧ଶ	/݀௧, ܴ௧ ൌ
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௧ܲ 	, ܳ௧	, ܴ௧	and	 ௧ܸ are convex terms. Thus, the cruise fuel burn 
cost function can be written with two bilinear terms as 
௖݂௥ ൌ ܿ଴ ௧ܲܳ௧ ൅ ܿଷܴ௧ ௧ܸ. For the descent stage fuel cost 

functions (2), similarly, we define ܺ௧ ൌ 	݀ଶ/ݖ௧ ൅	ܿଵଶ	݀௧	, 
௧ܹ ൌ ܿହ ൅	ܿ଺ݕ௧ 	൅ ܿ଻	ݕ௧ଶ 	൅ ௧ܨ , ௧ଷݕ	଼ܿ ൌ ܿଽ ൅	ܿଵ଴ݕ௧ and 

௧ܩ ൌ ݀௧ଶ/ݖ௧ . Thus, the descent stage fuel burn cost functions 
can be written as ௗ݂ ൌ min	ሼܨ௧ܩ௧, ܿଵଵ ௧ܺ ௧ܹሽ . 

We now show using the terms ௧ܲ
టܳ௧

టhow the bilinear terms 
are approximated by piecewise linear functions. We 
approximate the bilinear terms over a two dimensional grid 
where the axes are over ௧ܲ and ܳ௧. We discretize ௧ܲ and ܳ௧ into 
Nx and Ny intervals respectively to form the grid. Furthermore, 
we introduce the auxiliary variables ߣଵ

ሼ௜௫,௜௬,௧,టሽ, ݔ݅ ൌ
1,… , ௫ܰ	, ݕ݅ ൌ 1,… , ௬ܰ  and two SOS2 variables ߙଵሼ௜௫,௧,టሽ	and 

ଵߚ
ሼ௜௫,௜௬,௧,టሽ. ୫ܲ୧୬, ୫ܲୟ୶, ܳ௠௜௡ and ܳ௠௔௫ are the lower and upper 

bounds for ௧ܲand ܳ௧
ట, respectively. Thus, we can approximate 

the bilinear terms with the following set of constraints, which 
we denote as ܲܳట. 
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Similarly, we can approximate the other bilinear terms, 
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expressions. We thus obtain similar sets of constraints, which 
are defined as ܴܸట , ܩܨట and ܹܺట, where ߰ ∈                                                                                                                                                 .ߖ

IV. NUMERICAL RESULTS AND PRACTICAL IMPLICATIONS 

Hartsfield-Jackson Atlanta International Airport (ATL) is 
selected as a representative major airport, and the OPD 
implementations at ATL, as described in [7], are utilized for 
the simulation setup. For analysis purposes, three different 
arrival rates, namely 20, 30 and 40 flights/hr are considered. 
For each arrival rate, the flight arrival times are simulated in a 
one-hour interval. Ten major types of aircraft are used, where 
their statistical distribution is obtained from historical data. 
First come first serve policy is used as the sequencing rule.  

As described in Section II and Fig. 2, given a fixed arrival 
rate, we increase the number of metering points and solve the 
corresponding MDP model until the marginal savings are 
sufficiently small, e.g. less than 1% in our setup.  

Figure 3.  Savings under different arrival rates using MDP implementations  

Table I.  Ideal locations of 8 metering points (in units of nm from TOD) 

1 2 3 4 5 6 7 8 

 ௧ 10.2 18.1 28.6 40.3 49.7 87.8 127.4 150ݕ

The cost savings per flight for each arrival rate under 
different numbers of metering points are shown in Fig. 3. The 
results indicate that when the arrival rates are 30 and 40 
flights/hr, the optimal number is 8, while 7 metering points are 
sufficient to achieve the maximum savings for the case of 20 
flights/hr. For the overall setup, we assume that 8 metering 
points represent the ideal configuration, and implement the SP 
model accordingly. The optimal locations generated are shown 
in Table I. As we can see, the first five metering points are 
more closely distributed and the distances between them are 
around 10 nm. The remaining ones have larger distances from 
each other.  This implies that higher levels of traffic control are 
more beneficial at higher flight levels. This configuration 
results in an increased savings of around $23/flight, when 
compared with the current configuration. These savings imply 
a potential value of $3.8 million/year at ATL.  

V. CONCLUSIONS  

In this paper, we develop models improving the efficiency 
of OPD procedures through optimal metering policies, which 
include identification of the optimal number and locations for 
such metering points. Initial numerical analyses indicate that 
use of such optimal configurations would result in important 
savings for airlines. As future research, the sensitivity of these 
saving values over different airport setups can be analyzed, and 
both general and specific insights for airports can be derived. 
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