AGENT-BASED SIMULATION FRAMEWORK FOR AIRPORT COLLABORATIVE DECISION MAKING

Ivan García Vasco
Miguel Valero
Xavier Prats
Luis Delgado
Our Work

• **First steps** in the development of agent-based simulation framework for Airport Collaborative Decision Making, following EUROCONTROL guidelines.

• Aiming to study the **emerging behaviour** of the system.
Index

- What is A-CDM?
- Agent Based Modelling
- Simulator Structure and Models
- How does the simulator work?
- Future works
- Conclusions
What is A-CDM?

AIRPORT COLLABORATIVE DECISION MAKING
Airport Collaborative Decision Making basics

- Sharing timely and accurate flight, network and airport data
- Use standard systems, procedures and data structure

Objectives:
- Improve predictability and efficiency of the system
- Anticipate situations and facilitate better decision in advance
CDM in Europe and in the U.S.

CDM in the U.S.

- Shared decisions between Air Traffic Providers and the Aircraft Operators
- Used during Ground Delay Programs (ATFM)
- Focus on the improvement of the assigned delay when airlines do cancellation and substitution
- Fully implemented and operative

European A-CDM

- Defined by EUROCONTROL
- Shared Information between all the stakeholders involved in airport operations
- Focus on improve the efficiency and prediction of Turn-Around process
- Part of SESAR Master Plan
CDM in Europe and in the U.S.

CDM in the U.S.
- Shared decisions between Air Traffic Providers and the Aircraft Operators
- Used during Ground Delay Programs (ATFM)
- Focus on the improvement of the assigned delay when airlines do cancellation and substitution
- Fully implemented and operative

European A-CDM
- Defined by EUROCONTROL
- Shared Information between all the stakeholders involved in airport operations
- Focus on improve the efficiency and prediction of Turn-Around process
- Part of SESAR Master Plan

Work Focused on European A-CDM
A-CDM Airports

Fully implemented Airports:

- Munich
- Brussels
- Paris CDG
- Frankfurt
- London Heathrow
- Helsinki
- Düsseldorf
- Zurich
- Oslo

Source: EUROCONTROL webpage (20 May 2014)
European A-CDM

Air Traffic Control

CFMU

Aircraft Operators

Ground Handling

Airport Operations
A-CDM Implementation

- Information Sharing
- Turn Around Process (Milestone Approach)
- Variable Taxi Time Calculation
- Pre-departure Sequence
- Collaborative Management of FUM
- CDM in Adverse Conditions
Information Sharing

- Airlines’ schedule
- Planning information
- Flight progress information
- Predictions messages
- Status messages
- Operational planning information
- Advisories
- Alerts
- Maintenance of environmental information (aeronautical and meteorological)
- Data recording and archiving
Information Sharing

- Examples of input data from the different stakeholders:

 - **Aircraft Operator/Handling Agent**
 - planning data
 - turn-round times
 - flight plans
 - movement data
 - priority of flights
 - aircraft registration and type changes
 - TOBT
 - movement messages

 - **Airport Operations**
 - stand and gate allocation
 - environmental information
 - special events
 - reduction in capacity
 - airport slot data
 - ADES
 - SOBT

 - **Air Traffic Control**
 - ELDT
 - ALDT
 - TSAT
 - TTOT
 - runway and taxiway conditions
 - taxi times
 - SID allocation
 - runway capacity

 - **Service Providers**
 - de-icing companies
 - MET office
 - forecast & actual met. info
 - and others
 - (fire, police, customs, fuel, etc...)

ICRAT ’14

Garcia Vasco, Prats, Valero, Delgado
Milestone Approach

Turn-Around Process divided in 16 milestones
Why develop a simulator?

- Many actors involved with different behaviours and interactions
- Actual effect on daily operations of the A-CDM implementation for a specific airport is hard to quantify
- Simulation framework will help to evaluate the impact of using different strategies
Agent Based Modeling
Why using ABM?

- Stakeholders → Agents modelled independently
- Agents run autonomously and interact via messages
- Important goal: capture the interactions between agents

- Example of interaction capturing
 - Arrows → Messages between agents
Modelling and Programming

GAIA Methodology
- Models of Roles and interactions to define the agents

JADE
- Framework to implement the agents
- **Java** middleware for agent oriented platforms
- Communications → FIPA specifications
Simulator Structure and Models

ABM applied to A-CDM
Agent Model

- A-CDM Agents
- Software Agents
A-CDM Agents

Agent Based Simulation Framework for Airport Collaborative Decision Making

ICRAT '14
SIMULATOR Information Sharing graphical interface example
Software Agents

Graphical Interface:
- Aircraft Data Updates
- Number of Aircrafts in ACDM

Simulator Output Database:
- Saves simulation results

Simulator Input:
- Handles input data
- Generate initial data for simulation

Milestone Trigger:
- Starts every milestone in chronological order
- Responsible of simulation timing
Communications Model

Types of Communications:

1) Start Simulation
2) Start Milestone
3) Update Aircraft Information
4) Broadcast Aircraft Data Info.
5) Update Graphical Interface
6) Update Log File
How does the simulator work?
Exchanged Data

* Inside a message

Delays

IS: BroadcastInformation
Aircraft: IBE220
STATUS: LANDED
Times:
 ETOT' = 930
 ELDT = 1045
 ETOT = 1155
 EIBT = 1100
 EOBT = 1135
Milestone: 6
Secondary times:
 ACGT: 1103
 ASBT: 1110
 ARDT: 1128
 ASRT: 1129
 TSAT: 1130
Warnings:
 EOBT delayed from 1125 by 1135 by GH
 ASBT delayed from 1100 by 1110 by AO-IBE
 ARDT delayed from 1110 by 1128 by AO-IBE
 ASRT delayed from 1119 by 1129 by AO-IBE
Simulator architecture

Starting the simulation
Simulator architecture

Starting the simulation
Simulator architecture

During the simulation
Simulator architecture

During the simulation

Agent Based Simulation Framework for Airport Collaborative Decision Making

Garcia Vasco, Prats, Valero, Delgado
Simulator architecture

During the simulation
Simulator architecture

During the simulation

For every Milestone
Simulator architecture

Ending the simulation
Example: Inside milestone 1

IS: Broadcast Information
Aircraft: IBE220
STATUS: INITIATED
Times:
- ETOT' = 0
- ELDT = 0
- ETOT = 0
- EIBT = 0
- EOBT = 0
Milestone: 1
Secondary times:
- ACGT: 0
- ASBT: 0
- ARDT: 0
- ASRT: 0
- TSAT: 0
Incidents:
Example: Inside milestone 1

Milestone Trigger | CFMU | Airport | ATC | AO | GH | IS

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
(2a)

IS: Broadcast Information
Aircraft: IBE220
STATUS: INITIATED
Times:
 ETOT' = 0
 ELDT = 0
 ETOT = 0
 EIBT = 0
 EOBT = 0
Milestone: 1
Secondary times:
 ACGT: 0
 ASBT: 0
 ARDT: 0
 ASRT: 0
 TSAT: 0
Incidents:
Example: Inside milestone 1

IS: Broadcast Information
Aircraft: IBE220
STATUS: INITIATED
Times:
 ETOT' = 930
 ELDT = 1045
 ETOT = 0
 EIBT = 0
 EOBT = 0
Milestone: 1
Secondary times:
 ACGT: 0
 ASBT: 0
 ARDT: 0
 ASRT: 0
 TSAT: 0
Incidents:
Example: Inside milestone 1

IS: Broadcast Information
Aircraft: IBE220
STATUS: INITIATED

Times:
- \(ETOT' = 930 \)
- \(ELDT = 1045 \)
- \(ETOT = 0 \)
- \(EIBT = 0 \)
- \(EOBT = 0 \)

Milestone: 1
Secondary times:
- \(ACGT = 0 \)
- \(ASBT = 0 \)
- \(ARDT = 0 \)
- \(ASRT = 0 \)
- \(TSAT = 0 \)

Incidents:

Garcia Vasco, Prats, Valero, Delgado
Example: Inside milestone 1

IS: Broadcast Information
Aircraft: IBE220
STATUS: INITIATED
Times:
- ETOT' = 930
- ELDT = 1045
- ETOT = 1145
- EIBT = 1100
- EOBT = 0
Milestone: 1
Secondary times:
- ACGT: 0
- ASBT: 0
- ARDT: 0
- ASRT: 0
- TSAT: 0
Incidents:
Example: Inside milestone 1

Milestone Trigger | CFMU | Airport | ATC | NO | GH | IG

IS: Broadcast Information
Aircraft: IBE220
STATUS: INITIATED
Times:
- ETOT' = 930
- ELDT = 1045
- ETOT = 1145
- EIBT = 1100
- EOBT = 0

Milestone: 1
Secondary times:
- ACGT: 0
- ASBT: 0
- ARDT: 0
- ASRT: 0
- TSAT: 0

Incidents:
Example: Inside milestone 1

IS: Broadcast Information
Aircraft: IBE220
STATUS: INITIATED
Times:
- ETOT' = 930
- ELDT = 1045
- ETOT = 1145
- EIBT = 1100
- EOBT = 1125
Milestone: 1
Secondary times:
- ACGT: 0
- ASBT: 0
- ARDT: 0
- ASRT: 0
- TSAT: 0
Incidents:
Example: Inside milestone 1

IS: Broadcast Information
Aircraft: IBE220
STATUS: INITIATED
Times:
ETOT' = 930
ELDT = 1045
ETOT = 1145
EIBT = 1100
EOBT = 1125
Milestone: 1
Secondary times:
ACGT: 0
ASBT: 0
ARDT: 0
ASRT: 0
TSAT: 0
Incidents:
Example: Inside milestone 1

Milestone: 1
Secondary times:
- ACGT: 1103
- ASBT: 1100
- ARDT: 1118
- ASRT: 1119
- TSAT: 1120

Incidents:

IS: Broadcast Information
Aircraft: IBE220
STATUS: INITIATED
Times:
- ETOT' = 930
- ELDT = 1045
- ETOT = 1145
- EIBT = 1100
- EOBT = 1125
Example: Inside milestone 1

* Example of Delay
Example: Inside milestone 1

IS: Broadcast Information
Aircraft: IBE220

STATUS: INITIATED
Times:
- ETOT' = 930
- ELDT = 1045
- ETOT = 1145
- EIBT = 1100
- EOBT = 1135

Milestone: 1
Secondary times:
- ACGT: 1103
- ASBT: 1100
- ARDT: 1118
- ASRT: 1119
- TSAT: 1120

Incidents:
EOBT delayed from 1125 to 1135 by GH

* Example of Delay
Example: Inside milestone 1

IS: Broadcast Information
Aircraft: IBE220
STATUS: INITIATED
Times:
- ETOT' = 930
- ELDT = 1045
- ETOT = 1155
- EIBT = 1100
- EOBT = 1135
Milestone: 1
Secondary times:
- ACGT: 1103
- ASBT: 1110
- ARDT: 1128
- ASRT: 1129
- TSAT: 1130
Incidents:
- EOBT delayed from 1125 to 1135 by GH
- ASBT delayed from 1100 to 1110 by AO-IBE
- TSAT delayed from 1120 to 1130 by ATC
- ARDT delayed from 1118 to 1128 by AO-IBE
- ASRT delayed from 1119 to 1129 by AO-IBE
Current status & Future works
Current Status

- 16 Milestones
- Multi-Aircraft
- Delay in any time/milestone
Future Works

Work on the reality of Agent Behaviours!!

- Realistic data of A-CDM agents
- Statistical distributions
 - Montecarlo methods
- Realistic data for airspace traffic

ICRAT '14
Conclusions

- ABM → Suitable to model complex systems like A-CDM
- Structure and communications defined for a simulator framework
- Real data → needed to be able to calibrate and validate our models, simulations and results
Thank you!

Do you have any questions?