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Abstract— In spite of the relevance of Reactionary delaysf air
traffic performance, the research effort to undersand the origin
and handle this kind of delays is in practice limied. While being
critically important due to its contribution to the total cost of
delay, it is the primary cause which must be identied if effective
action is to be taken. The SESAR WP-E project TREE (dat
driven modeling of network-wide extension of the tee of
reactionary delays in ECAC area) aims at charactering and
forecasting the propagation of reactionary delays hrough
European Network taking into account the influence b the
aircraft, crew and passenger links. Thus, the projecproposes the
use of innovative modelling techniques to exploreew solutions
that are not currently addressed by previous works.

Reactionary Delays; Complexity Science;
Management; Network Performance;

Disruption

. INTRODUCTION

According to CODA Digest 2011 and 2012, reactionary
propagated delays are one of the largest delaysesain
Europe. Among all the causes, Airlines related thee ones
with highest contribution to the total delay. Due the
complexity of the recording of precise origins efctionary
delays, Airlines find collecting all the primary ldgs as
effective way to monitor operational performance.

In case of unexpected events in the form of disoupt
airlines disruption management processes involvekinga
decisions during operations to minimize additionpkrating
costs while getting back on schedule as quicklyp@assible.
Measures such as flight cancelations, flight holdiscraft
swaps, crew rotation and passengers’ re-accomnoodatie
used as part of the disruption management proBesswuse the
airline system operates as a closely interconneudddork, it
is subject to propagated effects, this means, raptisn in one
airport can quickly propagate to multiple othertpaf the air
transport network.
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TREE proposes the use of a model to understand the
European Air Transport System response to airlifigsiption
management strategies linked to delays propagatiuh to
assess strategies to handle these disturbancedeldnes are
characterized by aircraft links, crew links and seaser
connections. Each branch of the delay-tree moniterglobal
metric of reactionary delay due to a particularetygf flight
link.

Additional measures can provide local values fochea
branch or even airline specific values: which petage of the
delay of airline ‘A’ suffered at the end of the dags been due
to reactionary delays type 'crew-link’? Which typé links
could provoke more delays? Moreover, capturing
reactionary impact per airline allows monitoring afrline-
driven criteria give emergence to negative efféabtt come
back to the same airline.

the

This paper presents the work that is being perfdringhe
frame of SESAR WP-E TREE project which, based
promising results obtained in previous researchksvaarried
out by the project team members for both USA antbean
networks, brings up the study of delays propagadiitted to
local strategies applied by the airlines for disiup
management.

on

Il.  LITERATURE SURVEY ON DELAYS PROPAGATION

The focus of this literature survey are works singylelay
propagation patterns in air transport networks afi as the
influence of different factors on these patternseré are two
main lines of study of delay propagation in airnsport:
mathematical static studies and modelling and sition
attempts to reproduce flight operations. For batled, most
literature is focused on USA data and network, eifetme
investigation is undertaking by European organireti and
researchers. On one hand, several studies anayatd data
to find cause-effect relations between air transgohedules
and the reactionary delays distributions in thewnet. A



prolific field of study is the algorithmic optimidan of airline
schedules with the general objective of having dvettelay
propagation pattern. In reference [1] a model wagebbped
for producing robust crew schedules with the olbjest of
minimizing the crew cost and maximizing the numlmdr
move-up crews, i.e. the crews that can potentladiyswapped
in operations. An algorithmic approach was alsaduse[2],
[3] and [4] for airline scheduling, focusing respeely on
maintenance routing constraints, redistributioexigting slack
in the planning process and multi-objective optatian. All
these theoretical studies showed promising resulteducing

degradation, behavior predictability, amplified @ap of
external events and geographical stability. Thditabdf the
model to measure reactionary delays and their gatjzm was
also explored. The model was later on evolved arstbmized
to analyze the impact in terms of network-wide perfance
and delay propagation of local departure prioritiaa
strategies [12], [13]. In this very recent workwias observed
how First Come First Served provides better peréorce
picture at global level than any of the studied atepe
prioritization criteria, whereas in few cases digh
improvements were detected at airport level in ifigec

propagated delays and improving the robustness hef t timeframes. As general conclusion, it was provedsthitability

network. Propagation trees [5], [6] are anotherl togeful

tracking for individual flight delays propagatiohrough the
network and studying the impact of airline scheduda delay
propagation. While pioneering study [6] pointed datthe

early reduction of primary delays as a key to anttelay

propagation [5] deepened in the tree analysis twlode that
even with root delays of up to 180 minutes, nedfl¥o of the
flights have no propagating effect. The work idiedi as the
key “buffers” limiting the propagation of delaysieavs going
off-duty, crews and aircraft remaining togetherefmnting one
delay from causing two subsequent downstream delaysl

periods of decreased activity in the network. Esten data
mining provided valuable results in [7] and [17heTthesis by
Jetzki [7] was one of the few attempts to analyzeopean
airline planning and traffic data in search of ggt@opagation
patterns. Results showed that over the observedsiasons,
on average 50% of delays in
reactionary delays. Hub-and-spoke operators haedoivest
ratio as reactionary delays account for nearly 40%l delays,
and point-to-point operations lie in between witbumnd 45%
of reactionary delay. Data mining was performed8has a

previous step to develop a model that reproducdayde

propagation in the USA airport network. There hdeen
several attempts to model delay spreading. The rémhe
complexity of the mechanisms that produce delaypagation
motivate that different modelling techniques wereposed. A
representative line of research focused on sinmgatine air
traffic system as a network of queues [9]. Usingredric the
propagated delay profile per flight and hop at eaicport, the
proposed model was used to estimate slack andt fligie
allowance needed to compensate for the root delagsports
and en-route. The stochastic nature of the aispar network
performance is taken into account in [10] to depelcstrategic
departure delay prediction model for a single airf@eparture
delays are split in three components: seasonat,trdaily
propagation pattern and random residuals, addessirthis
way the uncertainty in flight's departure time. Timkage
between flights is an essential feature of the osted
structure of the air traffic system, and therefitve propagation
dynamics cannot be understood without referring the
underlying complex structure. The use of networkotly to
characterize air transportation describes the syste a graph
formed with vertices representing commercial airpoand
edges direct flights between them. NeCo 2030 prdjet]
proposed a high level assessment of the behavibstability
of the highly congested European 2030 air transpetivork.
The tool used was a macroscopic model conceivedture
the emergence of network properties such as peafucen

of the mesoscopic modelling framework for analyzitg
multi-component air transport network and, in patr, for
obtaining straightforward performance results assed to
specific prioritization rules applied to flights. Aelated
approximation for analyzing the USA airport networas a
stochastic and dynamic queuing model based on
Approximate Network Delays concept (AND-concepty][1
The analytical macroscopic model computed the atxen
of delays within a network of airports, based ohestuled
itineraries of individual aircraft and a First Cogst Served
gueuing system for each airport based. The metrae local
and of system-wide (propagated) delays over a 24 period.
The authors used a stochastic and dynamic queuigipes to
estimate local delays and a network decompositipmaach to
propagate delays through the network. The mode®ilts
were sensitive to different parameters, such asetieng of the

the

low-cost operations aréslacks” in ground turnaround times and promisingsults

were obtained in reproducing trends and behavibes &re
observed in practice in the USA system.

I1l.  CHARACTERIZATION OF DELAY PROPAGATIONIN THE
USNETWORK

TREE modelling approach builds upon previous warked
on the US airport network by P. Fleurquin, J. JnRsco and
V. M. Eguiluz [8], [17], [18]. Indeed, the notabtapacity to
evaluate the risk of development of system-widegestion
and to assess the resilience of daily schedulesetwice
disruptions showed by the US model is one of thmmmeasons
why the TREE project is expected to be able tovdeli
interesting and useful results. In the followingctsmns US
model description and a summary of simulation tesale
provided:

A. Input Data

The model follows an agent-based approach, wittrafis
as the basic entities, and is data-driven in tises¢éhat the real
daily schedules and (optionally) primary delaystfar aircrafts
are used as input. These were reconstructed fratime\iOn-
Time Performance Data, built with flight statistipovided by
air carriers that exceed one percent of the annagibnal
revenue for domestic regular service, which can be
downloaded from the website of the Bureau of Trartsp
Statistics (BTS) [19]. The database comprises inétion
accounting for 74% of all the flights operatedhie S during
2010. For each flight includes real and schedushdure and
arrival times, origin and destination airport, iael and tail
number. It is worth noting that the schedules uged



modelling are based on real events, so they docoioicide
with the original schedules planned by the airlimethe cases
where canceled, diverted or rescheduled flightsirmawelved.
Such flights, however, represent less than 2% Idflights in
the database, so their effect is expected to blgitdg. An in-
depth analysis of the data can be found at [17].

B. Model Description

The model tracks the state of each aircraft asydail
schedules are performed, with a temporal resolutibrone
minute; the simulation ends once all aircrafts hesmpleted
their schedules. In case this happens after tleeteel day has
ended, flights scheduled for the next day are oosiclered. At
the beginning of each simulation run, connectior$wben
eligible pairs flights are established randomly.oTfghts are
eligible for connection if the arrival airport ohe first
coincides with the departure airport of the secamad the
scheduled departure time of the second lies wighi® hours
window starting at the scheduled arrival time @ finst. Each
eligible pair is connected with probability progortal, with a
factor a, to the flight connectivity level provided by tiBTS
for the airport where the connection takes pladee Gther

parameter 3, affects airport capacities: each airport has an

hourly capacity given by times its hourly scheduled arrival
rate and incoming aircrafts exceeding this capaaigy put on
hold in a queue on a “First In-First Served” badisys
accumulating delay. If a normal day of operationtasbe

modeled, botlo andf3 are supposed to have a single value for

the whole day and for all airports. However, then de
selectively modified for subsets of airports andfpecific time
windows in order to mimic external events such =seene
weather or labor issues. Other details to accoanexkternal
perturbations can be easily added. Flight conniégtind finite
airport capacity can be turned on/off separatelgxplore the
relevance of each sub-process in leading to netwik
congestion. Naturally, aircraft rotation is intimsto the
schedule and cannot be removed, although an atific
schedule could be used in place of a real one udysits
properties. Finally, aircrafts are not allowed &raver from
delay by increasing their flight speed, so delay caly be
absorbed at airports when aircrafts arrive latedtilltin time
for their next scheduled flight (the minimum tuneand time
is set to 30 minutes for all aircrafts and airportsA more
detailed description of the model is availablegh.|

C. Comparison of Model Predictions with Real Data

An airport is considered congested if the averagaydof
its departing flights over a certain period of timeceeds 29
minutes, which is the average delay of all fliglits the
database. By building an airport network for eaalp df data,
it is possible to assess whether congested airpmtsrganized
in connected clusters — a sign of spatiotemporaktaiion of
congestion — or not.
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Figure 1 Largest cluster size for each day of 2@90and Jaccard index
for consecutive days and between the best (lowerage delay) and worst
(higher average delay) 20 days of the year.

As can be seen in Figure 1, the scenario dramigtical
changes from day to day: in some days the lardestet can
include a significant part of the network, whileather days it
only consists of one or two airports. The overlphe sets of
airports in the largest cluster is measured bylt#eeard index,
the ratio between the number of elements in thersettion
and in the union of two sets. By calculating thecdad index
between the largest clusters in consecutive dayerahe top
20 worst and best days of the year, it can be aded that the
same airports are not consistently part of thesksirgluster.

To compare empirical data and model predictionss it
possible to use the temporal evolution of the Istrgiuster. In
order to do this the model is run with the follogiparameters:
primary delays from real dat§, = 1 (which amounts to the
assumption that the capacities are the same asnallyg
scheduled) and obtained by imposing that the largest cluster
size is as close as possible to the one seen dathe
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Figure 2 Temporal evolution of the largest clustize for real data and
simulations with different settings: regular modéth connecting flights and
finite airport capacities (A), infinite capaciti€B) and no connecting flights
(©).

Figure 2 shows the results for March 12 and Apfll 1
similar plots for other days, as well as other itet@bout the
comparison between model and real data omitted, feree
available in [8]. While the fit ofn is necessary to get the
maximum of these curves, the cluster size evolufiilows
remarkably well that of the real data and almo$x66f the
airports in the real cluster are correctly ideatfiby ranking
airports by probability of congestion. Furthermdrg fixing a,

the model can predict with 66% accuracy if a daly dévelop
a large congested cluster from the schedule akigeres 2B-
C shows the results of turning off airport congastand flight
connectivity; it is evident that the latter is thest important
factor. The impact of varyinf}, not shown here, is modest: a
reduction of the capacities of around 50% is nexgss order
to trigger new primary delays that later on wilregpd in a
cascading effect. Using initial delays differenorfr the real
ones, it is possible to assess the resilience sé¢hedule to
unforeseen events. In Figures 3, a fraction ofsarig selected
flights are delayed by a fixed amount of time. Thsults are
displayed for the schedules of the same days usd€ddure 2.
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Figure 3 Largest cluster size as a function of fifaetion of initially
delayed flights (chosen at random) and initial gdela

While April 19 was a normal day with low averagdage
March 12 had the second largest average delayeofydiar,
despite the fact that no major disruptive event vegorted in
the news. This implies that the network-wide praey of
delays was likely caused by internal mechanismbegystem;
this conclusion is also supported by the fact that surface
representing the largest cluster size for MarchcbBypared to
the one of April 19, is displaced toward smalleluea of the
initial delay intensity or fraction of delayed ftits, indicating a
higher susceptibility of the schedule to disrupfpezturbations.
Another remarkable property is that, regardlegbefschedule,
a non-negligible risk of systemic congestion cawagk be
introduced by sufficiently strong primary delays. picture
where the initial delays are distributed randondynot very
realistic, since the direct impact of events sustst@rms, air
controllers’ strikes or political riots is likelptbe localized. To
address this issue, simulations can be run withrélé initial
delays randomly shuffled between flights. The resabt
shown here, leads to the conclusion that randorunbations
can damage the system with much more ease thalizésta
ones, probably because more airports are affecigd deavier
burden is put on the smaller airports, which haweugh more
limited ability to react.
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Figure 4 Evolution of the largest cluster for O@pl27. The blue dots
represent the model run with alpha equal to 0.26beequal to 1 for all airports
during the whole day. The green dots representrtbéel run with reduced
connectivity and capacities in the time and zoneretthe weather disturbance
took place.

For the worst day of the year, October 27, theesxér
congestion was caused by meteorological conditiaitgch
according to the news reports affected at leasttskld-
Jackson airport in Atlanta and the three main aigpof the
New York-New Jersey area: John F. Kennedy, La Gaandd
Newark [20]. Average flight departure and arrivatlay
amounted to respectively 54 and 53 minutes, andattgest
congested cluster contained 88 airports.

An in-depth analysis of this day can thereforevige
useful insights on the resilience of the scheduolestternal
perturbations and on the proper way of modelindhsuents.
Some of the results obtained are shown in Figureith, more
details available on [18].

Without taking into account the perturbation, thelation
of the largest cluster obtained from the simulation
significantly different from the real one (althougthe
qualitative features are reproduced), but this lsannotably
improved by just introducing changesdnand3 localized in
space and time.

Finally, the question arises of whether the largegestion
of October 27 was mainly caused by the weathemtdnsic
inefficiencies in the schedule played a significarhe.

To provide an answer, the same connectivity, cépaci

reduction and primary delays of October 27 canpygied to
the schedule of another day in which no major mobl
occurred.

Figure 5 illustrates the outcome of this proceduith the
schedule of October 20: a large cluster still appdaading to
the conclusion that weather was indeed the maisecat the
congestion.
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Figure 5 Impact of the perturbation of October 27 tbe schedule of
October 20

IV. TREEMODELLING APPROACH

The modelling of Complex Systems is still an impatt
challenge in Science. The difficulty increases everther
when the object of the models is to do predictitivag can be
tested against the normal working conditions oteays such
as online social networks, pandemic propagatiotisgases or
cascade failures in transport networks. Since trsystems
contain a huge amount of heterogeneity and coiveit the
only sensible technique to generate realistic saatrrts and
testable predictions is to use a data-driven amgproa

In the particular case regarding ATM, these datastmu
include daily schedules for flights and aircrafts & set of
airports. A good part of Western Europe or the UBA are
large enough in traffic as to be prone to be subfeto this
type of simulations. Smaller subsystems may showverse
problems due to its reduced dimensions as largetufhtions
or a decrease in the simulations stability to utadety in the
input conditions.

The following sections describe how specific consemd
operations intrinsic to the European Air Transpatwork are
being modelled and implemented in TREE. Speciahtitin is
paid to the input data as well as the expectedlation results.

A. Network Nodes and Structure

The input traffic sample is one-year ECAC traffanple
including the following data for each flight: Cadja, Actual
Take Off Time (ATOT), Actual Off Block Time (AOBT),
Departure Airport (ADEP), Destination Airport (ADESlight
Duration, Registration, Equipment, Type of Flight
(regular/charter), Type of aircraft. The tool refwoes a
reduced set of nodes (airports) of the EuropeanTansport
Network. The vertices are represented by the discftying
form one airport (node) to another. The propagatiérthe
delays is represented by flight links related tighfis using
same aircraft, crew or passengers. The advantagesms of
computational tractability of modelling a simplidfienetwork
are direct. It is an assumption common to most rfsoolereal



networks that modelling in an explicit manner otg main
nodes provides representative results of networfopeance.
As discussed in [15], many empirical complex neksdrave a
skeleton, implying that for developing a dynamiceldel of an
empirical complex network it is enough to simulatay its
skeleton, not requiring simulation on (or even klemge of)
the full network.

B. Main features of the tool

The existence of arrival and departure slots is riuest
relevant difference between air traffic in Europel ghe US- in
the latter case, only four airports have slots.réfuge, one key
question is if and how the presence of slots affdoe results
already obtained for the US, both in the case ahinal
working conditions and with external perturbatieush as bad
weather.

1) Aircraft rotations

The model is built using an agent-based approadh wi
aircrafts playing the role of agents that are fwéd across
their rotations. A daily schedule with the plan¢atmns and
the expected departure and arrival time of thenflijom/to
each airport is thus necessary as an input fomtbael.

The schedule can be generated artificially, thislvé done
whenever a theoretical analysis will be perforniad,in order
to obtain realistic outputs, the schedule must céiom real
data. Note that there is a difference between nit@li daily
planning of each airline [16] and the one reall\pliemented
recorded in performance databases as CODA (Cedffale
for Delay Analysis). The former is the plan advahdy the
airlines regarding aircraft and crew rotations, lesithe latter
includes all the changes introduced by airline rgams to
overcome unexpected conflicts such as cancelatiugs to
weather or plan modifications due to mechanicaldass The
model can work with any of the two daily planscduld help
even to optimize the pre-established plan in otdereduce
delay propagation risks. However, CODA and RITAg&ach
and Innovative Technology Administration) data tgiy
contain only schedules that were really implemerated these
are, therefore, the main model inputs.

2) Passenger Connections and Crew Rotations
For the USA network, the level of connection betwee

flights in each airport is determined by the stumidd

information available on the yearly passenger cotimes in
each airport of the network. In TREE, the objeciv@ot only
to adapt these ideas to Europe, but also to go noeyay
introducing real information on passenger connestid his is
important because there exists an important varietythe
connectivity level among the flights departing frdhe same
airport. It is not only important in which airpdite connection
takes place, but also which the destination iswahidh is the
real demand in each connection or route. This imé&tion will

be included in the model in the moment in whicHight with

delay arrives at an airport. This flight has thencextain
probability of influencing other flights of the sammompany in
a given time window from its scheduled arrival tingo far,
the flights with connections of the passengers rewcwere

randomly selected, but this mechanism will be sarilly

improved by using market sector information. As thoe crew

rotations, it is the objective of TREE to identify set of

strategies applied by the airlines. However, sitls is

something directly related to airlines businesds iexpected
that information gathering is one of the challentgebe faced.
For this reason, the methodology for the capturaidines

strategies for organizing the crew rotation is beimaterialised
in interviews, distributing questionnaires amondiras and

organizing brainstorming sessions among experts.ldst was
the objective of the workshop on Airlines Disruptio
Management held in Palma de Mallorca (Spain).

Representatives of all the actors involved indiseuption
management process were invited as participantdineai
representatives, network manager representativéadvi([J,
airport operators, Air Navigation Service Providas traffic
controllers, ground handling agents and overall Agkperts.
Brainstorming sessions were oriented to the ideatibn of
airlines specific strategies in case of large giSons
impacting their operations. Thus, different casediss of
interest were analysed in detail. These case studid
constitute the basis for implementing modellingnsc®s.

3) Airport Operations

The next element to be considered, which affedthitfl
performance, is airport operations. For each diffpiodemand
exceeds capacity the flights of all the companiepatting
during a time window get delayed. The delay affevisre
flights that may have to wait longer to be servedt® be
allowed to take off due to air space control restns. The
effect of airport capacity limitation will be inaied in the
model by introducing a queue system. For instaimceost of
the US airports where the rule for service or faketoff is
based on the protocol “first-arrived, first-servedsingle queue
system is enough to model airport operations vatiism.

In the case of the ECAC area, the operations aree mo
complex due to the existence of ATFCM regulatid@aeues
for arrival, service and departure will be stiledsbut the order
and priorities will be determined by the slot a#ltion based on
those regulations. In the TREE model, all these aeisms
will be taken into account. The slot management \wé
modelled in order to obtain realistic predictions fdelay
generation and propagation.

4) Yot Management
First of all, it will be assumed that the scheduesained
from the data correspond to real Airport slot alib@n. That is,
each flight with a certain scheduled departure rava time
has Airport slots assigned.

Different schedule allocations could be compareteims
of delay propagation in the system due to disrumstio

For simplification, regulation will only be applietb
departure and destination Airports, not to ACC dvAT
sectors. Each airport will have a nominal capaeétiye which
will define the maximum number of flights that cdme
operated per hour. This nominal capacity will bestant for
all the simulation.



Depending on the external event (i.e. meteoroldgicant,
security checks...) that is simulated, a reductiothefcapacity
affecting one or several airports will occur overeatain period
of time.

If with this reduction of capacity either the depiae or the
destination airport is not able to cope with thendad then a
regulation will be imposed and an ATFM slot will issued for
the flights affected. For the flights not affectegla regulation
the “First Planned- First Served” principle will bpplied.

When the regulation is activated, the model staremalyse
flight plans. Each flight concerned by the regulatis given a
provisional slot based on the order of their EstadaTime
Over (ETO) the restricted location (in this casdl Wwe the
Estimated Take Off Time (ETOT) for departures stifaated
Landing Time (ELDT) for arrivals). This slot is akse to the
requested Estimated Time Over (ETO) the restritbedtion
as it is available:

» |If that slot is free, it is assigned to the flighthich
thus suffers no delay.

» If that slot is already pre-allocated to a flighttieh is
planned to depart or arrive from/to the restric@gort
after the new flight, then the latter takes thet. Sf

course, the consequence can be a chain reaction,

because the flight whose slot has been taken timies
recover another slot, possibly by taking the slbt o
another flight, etc.

« In case a flight is subject to regulation in both
departure and destination airports, the
constraining regulation will prevail.

The slot is an interval of time that goes fromt®b+10’ of
the CTOT (Calculated Take Off Time). The new Estada
Take Off Time of the flight will depend on the Takime of
the airport. Two hours before the Estimated TakieT@he the
slot is fixed and not subject to modification. A chanism of
Slot Swapping will be implemented only if requestad the
Aircraft Operator, with the following conditions:

» The two concerned flights must have a slot issued;

 The two flights must be subject to the same mos

penalizing regulation;
» Only one swap per flight shall be accepted;

» If an assigned slot could not be achieved by dtlig
new slot will be assigned for it.

C. Input Data

Passenger and flight traffic data are the key fodefling
the skeleton of the air transport network. Aspesish as
general connectivity level, primary delays and @itmominal
capacities will define the conditions for operation

The input data are as follows:

* Flight data: data sources like CODA, will providatal
on daily flight plans with scheduled arrival and
departure times of all the flights, along with #iecraft
rotations.

» Market sector data: will determine passenger
connections between the different flights arrivinggd
departing from each airport.

« Parameter for the level of general connectivityelev
Passenger connections are not the only factorctimat
produce reactionary delays in outgoing flights. WCre
rotation is also important and even though some
feedback on the typical airline practices is expédh
this sense in the expert consultation, the mod#l wi
have to include a stochastic mechanism to take into
account this type of connectivity with a free paeden
to tune its relevance.

» Airports nominal capacity: there are two options fo
calculating Airports nominal capacity. The firsteois
based on extracting the information from input ficaf
samples (schedules). Still, the model will alsdude a
free parameter that will allow us to modify the aaity
globally or locally. The tuning of the parametedlwi
make possible the simulation of situations suchaxs
weather conditions or labour issues affecting some
airports. The second one is based on using publishe
data, i.e.: via Airport Corner (web based applaaibf
EUROCONTROL) or European Network Operations
Plan 2012-2014.

Primary delays: this information can come from real
data as CODA, for instance to validate the model

most

predictions. It can be also fake initial conditions
generated to study some particular scenarios. For
example, concentrating the delays in a certainogirp
or flights to test the system resilience by feedimen
these primary delays into the model and analydieg t
unfolding of the corresponding delay trees in the
network.

D. Smulation Outputs

The simulation outputs will be comparable to the
performance data contained in CODA. Each modelzaain
will generate a pattern of delay propagation frdva primary
delays on. It will include the list of affecteddtits, the airports
fhey visited in their rotations as well as the ugaof each
airport in terms of congestion along the day houhbur. The
advantage of the model is that besides this infoomat also
allows for a detailed tracking of which flight cass the
reactionary delays in subsequent flights (treededdys). This
extra information will be also part of the outperen though it
is different from the actual performance data.

It is important to stress that the results of eaelization of
the model will be tracking the delayed flights, gtatus of the
airport or the causal relations between flightsdping or
suffering reactionary delays. However, given theclsastic
nature of some of the model components and in dolearry
out a serious analysis on the outcome, most ofntbérics
require the performing of statistics. The mediathefdifferent
estimators will be considered, but also their thations across
model realizations.



V. NEXT STEPS

Next steps are oriented to the implementation efciic
operations intrinsic to the European Air Transpata
Network into the modelling tool. Then it will beehime to
validate the tool to prove the suitability of thREE modelling
framework for analysing and tracking the tree ddct®nary
delays (making distinctions between delays, i.ewctinks,
aircraft links, passenger links). Although somec#jie case
studies of interest were identified during firsbject workshop,
the challenge of capturing airlines strategiesci@w and slot
swapping remains there. Interviews with
representatives and a literature review focusedamlines
disruption management will also be performed. Cacet of
case studies is identified the experimental pladl Wwe
performed. The experimental plan will include thember of
scenarios to be modelled, the number of exercsée ttested
in each scenario and the list of metrics to be toomil. After
simulations, a preliminary analysis of the resulidl be
performed. Experts are expected to be the contiibior the
final validation of the results.

VI. CONCLUSIONS

Operating an aircraft within Europe is a very diffiet
scenario to that of the equivalent in the USA. Theplexity,
the varied governance, the diverse cultures andplcated
liaison with differing bordering countries all cobute in
severe contrast to the more simplified version ofvhthe
Federal Aviation Authority’s area of responsibilftynctions.

Airline Disruption Management process is a transaker
problem impacting several airline functions withffelient
kinds of origins and root causes. The robustneshefirline
schedule (including turnaround times)
propagation of reactionary delays.

In this sense, the model that is being proposeun ffREE
would allow different actors testing different sérgies giving
highly valuable support in problem solving procasse

The integrated approach to a very combinatoriablem
based on aircraft, the flights, crew rotation, éimport slots and
passenger re-accommodation is the key towards apipirg
an ideal solution.
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