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Abstract— In spite of the relevance of Reactionary delays for air 
traffic performance, the research effort to understand the origin 
and handle this kind of delays is in practice limited. While being 
critically important due to its contribution to the  total cost of 
delay, it is the primary cause which must be identified if effective 
action is to be taken. The SESAR WP-E project TREE (data-
driven modeling of network-wide extension of the tree of 
reactionary delays in ECAC area) aims at characterizing and 
forecasting the propagation of reactionary delays through 
European Network taking into account the influence of the 
aircraft, crew and passenger links. Thus, the project proposes the 
use of innovative modelling techniques to explore new solutions 
that are not currently addressed by previous works. 

Reactionary Delays; Complexity Science; Disruption 
Management; Network Performance; 

I. INTRODUCTION 

According to CODA Digest 2011 and 2012, reactionary or 
propagated delays are one of the largest delays causes in 
Europe. Among all the causes, Airlines related are the ones 
with highest contribution to the total delay. Due to the 
complexity of the recording of precise origins of reactionary 
delays, Airlines find collecting all the primary delays as 
effective way to monitor operational performance.  

In case of unexpected events in the form of disruptions, 
airlines disruption management processes involve making 
decisions during operations to minimize additional operating 
costs while getting back on schedule as quickly as possible. 
Measures such as flight cancelations, flight holds, aircraft 
swaps, crew rotation and passengers’ re-accommodation are 
used as part of the disruption management process. Because the 
airline system operates as a closely interconnected network, it 
is subject to propagated effects, this means, a disruption in one 
airport can quickly propagate to multiple other parts of the air 
transport network.  

TREE proposes the use of a model to understand the 
European Air Transport System response to airlines disruption 
management strategies linked to delays propagation and to 
assess strategies to handle these disturbances. The delays are 
characterized by aircraft links, crew links and passenger 
connections. Each branch of the delay-tree monitors the global 
metric of reactionary delay due to a particular type of flight 
link.  

Additional measures can provide local values for each 
branch or even airline specific values: which percentage of the 
delay of airline ‘A’ suffered at the end of the day has been due 
to reactionary delays type ’crew-link’? Which type of links 
could provoke more delays? Moreover, capturing the 
reactionary impact per airline allows monitoring if airline-
driven criteria give emergence to negative effects that come 
back to the same airline.  

This paper presents the work that is being performed in the 
frame of SESAR WP-E TREE project which, based on 
promising results obtained in previous research works carried 
out by the project team members for both USA and European 
networks, brings up the study of delays propagation linked to 
local strategies applied by the airlines for disruption 
management.  

II. LITERATURE SURVEY ON DELAYS PROPAGATION  

The focus of this literature survey are works studying delay 
propagation patterns in air transport networks as well as the 
influence of different factors on these patterns. There are two 
main lines of study of delay propagation in air transport: 
mathematical static studies and modelling and simulation 
attempts to reproduce flight operations. For both lines, most 
literature is focused on USA data and network, even if the 
investigation is undertaking by European organizations and 
researchers. On one hand, several studies analyzed static data 
to find cause-effect relations between air transport schedules 
and the reactionary delays distributions in the network. A 



prolific field of study is the algorithmic optimization of airline 
schedules with the general objective of having better delay 
propagation pattern. In reference [1] a model was developed 
for producing robust crew schedules with the objectives of 
minimizing the crew cost and maximizing the number of 
move-up crews, i.e. the crews that can potentially be swapped 
in operations. An algorithmic approach was also used in [2], 
[3] and [4] for airline scheduling, focusing respectively on 
maintenance routing constraints, redistribution of existing slack 
in the planning process and multi-objective optimization. All 
these theoretical studies showed promising results in reducing 
propagated delays and improving the robustness of the 
network. Propagation trees [5], [6] are another tool useful 
tracking for individual flight delays propagation through the 
network and studying the impact of airline schedules on delay 
propagation. While pioneering study [6] pointed out to the 
early reduction of primary delays as a key to control delay 
propagation [5] deepened in the tree analysis to conclude that 
even with root delays of up to 180 minutes, nearly 40% of the 
flights have no propagating effect. The work identified as the 
key “buffers” limiting the propagation of delays: crews going 
off-duty, crews and aircraft remaining together (preventing one 
delay from causing two subsequent downstream delays), and 
periods of decreased activity in the network. Extensive data 
mining provided valuable results in [7] and [17]. The thesis by 
Jetzki [7] was one of the few attempts to analyze European 
airline planning and traffic data in search of delay propagation 
patterns. Results showed that over the observed four seasons, 
on average 50% of delays in low-cost operations are 
reactionary delays. Hub-and-spoke operators have the lowest 
ratio as reactionary delays account for nearly 40% of all delays, 
and point-to-point operations lie in between with around 45% 
of reactionary delay. Data mining was performed in [8] as a 
previous step to develop a model that reproduces delay 
propagation in the USA airport network. There have been 
several attempts to model delay spreading. The inherent 
complexity of the mechanisms that produce delay propagation 
motivate that different modelling techniques were proposed. A 
representative line of research focused on simulating the air 
traffic system as a network of queues [9]. Using as metric the 
propagated delay profile per flight and hop at each airport, the 
proposed model was used to estimate slack and flight time 
allowance needed to compensate for the root delays at airports 
and en-route. The stochastic nature of the air transport network 
performance is taken into account in [10] to develop a strategic 
departure delay prediction model for a single airport. Departure 
delays are split in three components: seasonal trend, daily 
propagation pattern and random residuals, addressing in this 
way the uncertainty in flight's departure time. The linkage 
between flights is an essential feature of the networked 
structure of the air traffic system, and therefore the propagation 
dynamics cannot be understood without referring to the 
underlying complex structure. The use of network theory to 
characterize air transportation describes the system as a graph 
formed with vertices representing commercial airports and 
edges direct flights between them. NeCo 2030 project [11] 
proposed a high level assessment of the behavior and stability 
of the highly congested European 2030 air transport network. 
The tool used was a macroscopic model conceived to capture 
the emergence of network properties such as performance 

degradation, behavior predictability, amplified impact of 
external events and geographical stability. The ability of the 
model to measure reactionary delays and their propagation was 
also explored. The model was later on evolved and customized 
to analyze the impact in terms of network-wide performance 
and delay propagation of local departure prioritization 
strategies [12], [13]. In this very recent work, it was observed 
how First Come First Served provides better performance 
picture at global level than any of the studied departure 
prioritization criteria, whereas in few cases slight 
improvements were detected at airport level in specific 
timeframes. As general conclusion, it was proved the suitability 
of the mesoscopic modelling framework for analyzing the 
multi-component air transport network and, in particular, for 
obtaining straightforward performance results associated to 
specific prioritization rules applied to flights. A related 
approximation for analyzing the USA airport network was a 
stochastic and dynamic queuing model based on the 
Approximate Network Delays concept (AND-concept) [14]. 
The analytical macroscopic model computed the propagation 
of delays within a network of airports, based on scheduled 
itineraries of individual aircraft and a First Come First Served 
queuing system for each airport based. The metrics were local 
and of system-wide (propagated) delays over a 24 hour period. 
The authors used a stochastic and dynamic queuing engine to 
estimate local delays and a network decomposition approach to 
propagate delays through the network. The model’s results 
were sensitive to different parameters, such as the setting of the 
‘‘slacks’’ in ground turnaround times and promising results 
were obtained in reproducing trends and behaviors that are 
observed in practice in the USA system.  

III.  CHARACTERIZATION OF DELAY PROPAGATION IN THE 

US NETWORK 

TREE modelling approach builds upon previous work done 
on the US airport network by P. Fleurquin, J. J. Ramasco and 
V. M. Eguiluz [8], [17], [18]. Indeed, the notable capacity to 
evaluate the risk of development of system-wide congestion 
and to assess the resilience of daily schedules to service 
disruptions showed by the US model is one of the main reasons 
why the TREE project is expected to be able to deliver 
interesting and useful results. In the following sections US 
model description and a summary of simulation results are 
provided: 

A. Input Data 

The model follows an agent-based approach, with aircrafts 
as the basic entities, and is data-driven in the sense that the real 
daily schedules and (optionally) primary delays for the aircrafts 
are used as input. These were reconstructed from Airline On-
Time Performance Data, built with flight statistics provided by 
air carriers that exceed one percent of the annual national 
revenue for domestic regular service, which can be 
downloaded from the website of the Bureau of Transport 
Statistics (BTS) [19]. The database comprises information 
accounting for 74% of all the flights operated in the US during 
2010. For each flight includes real and scheduled departure and 
arrival times, origin and destination airport, airline and tail 
number. It is worth noting that the schedules used for 



modelling are based on real events, so they do not coincide 
with the original schedules planned by the airlines in the cases 
where canceled, diverted or rescheduled flights are involved. 
Such flights, however, represent less than 2% of all flights in 
the database, so their effect is expected to be negligible. An in-
depth analysis of the data can be found at [17]. 

B. Model Description 

The model tracks the state of each aircraft as daily 
schedules are performed, with a temporal resolution of one 
minute; the simulation ends once all aircrafts have completed 
their schedules. In case this happens after the selected day has 
ended, flights scheduled for the next day are not considered. At 
the beginning of each simulation run, connections between 
eligible pairs flights are established randomly. Two flights are 
eligible for connection if the arrival airport of the first 
coincides with the departure airport of the second, and the 
scheduled departure time of the second lies within a 3 hours 
window starting at the scheduled arrival time of the first. Each 
eligible pair is connected with probability proportional, with a 
factor α, to the flight connectivity level provided by the BTS 
for the airport where the connection takes place. The other 
parameter, β, affects airport capacities: each airport has an 
hourly capacity given by β times its hourly scheduled arrival 
rate and incoming aircrafts exceeding this capacity are put on 
hold in a queue on a “First In-First Served” basis, thus 
accumulating delay. If a normal day of operation is to be 
modeled, both α and β are supposed to have a single value for 
the whole day and for all airports. However, they can be 
selectively modified for subsets of airports and/or specific time 
windows in order to mimic external events such as extreme 
weather or labor issues. Other details to account for external 
perturbations can be easily added. Flight connectivity and finite 
airport capacity can be turned on/off separately to explore the 
relevance of each sub-process in leading to network-wide 
congestion. Naturally, aircraft rotation is intrinsic to the 
schedule and cannot be removed, although an artificial 
schedule could be used in place of a real one to study its 
properties. Finally, aircrafts are not allowed to recover from 
delay by increasing their flight speed, so delay can only be 
absorbed at airports when aircrafts arrive late but still in time 
for their next scheduled flight (the minimum turn-around time 
is set to 30 minutes for all aircrafts and airports).  A more 
detailed description of the model is available in [8] . 

C. Comparison of Model Predictions with Real Data 

An airport is considered congested if the average delay of 
its departing flights over a certain period of time exceeds 29 
minutes, which is the average delay of all flights in the 
database. By building an airport network for each day of data, 
it is possible to assess whether congested airports are organized 
in connected clusters – a sign of spatiotemporal correlation of 
congestion – or not.  

 

 
Figure 1 Largest cluster size for each day of 2010 (A) and Jaccard index 

for consecutive days and between the best (lower average delay) and worst 
(higher average delay) 20 days of the year. 

As can be seen in Figure 1, the scenario dramatically 
changes from day to day: in some days the largest cluster can 
include a significant part of the network, while in other days it 
only consists of one or two airports. The overlap of the sets of 
airports in the largest cluster is measured by the Jaccard index, 
the ratio between the number of elements in the intersection 
and in the union of two sets. By calculating the Jaccard index 
between the largest clusters in consecutive days or for the top 
20 worst and best days of the year, it can be concluded that the 
same airports are not consistently part of the largest cluster. 

To compare empirical data and model predictions, it is 
possible to use the temporal evolution of the largest cluster. In 
order to do this the model is run with the following parameters: 
primary delays from real data, β = 1 (which amounts to the 
assumption that the capacities are the same as originally 
scheduled) and α obtained by imposing that the largest cluster 
size is as close as possible to the one seen in the data.  

 

 

 

 



 

 

 
Figure 2 Temporal evolution of the largest cluster size for real data and 

simulations with different settings: regular model with connecting flights and 
finite airport capacities (A), infinite capacities (B) and no connecting flights 
(C). 

Figure 2 shows the results for March 12 and April 19; 
similar plots for other days, as well as other details about the 
comparison between model and real data omitted here, are 
available in [8]. While the fit of α is necessary to get the 
maximum of these curves, the cluster size evolution follows 
remarkably well that of the real data and almost 60% of the 
airports in the real cluster are correctly identified by ranking 
airports by probability of congestion. Furthermore, by fixing α, 

the model can predict with 66% accuracy if a day will develop 
a large congested cluster from the schedule alone. Figures 2B-
C shows the results of turning off airport congestion and flight 
connectivity; it is evident that the latter is the most important 
factor. The impact of varying β, not shown here, is modest: a 
reduction of the capacities of around 50% is necessary in order 
to trigger new primary delays that later on will spread in a 
cascading effect. Using initial delays different from the real 
ones, it is possible to assess the resilience of a schedule to 
unforeseen events. In Figures 3, a fraction of randomly selected 
flights are delayed by a fixed amount of time. The results are 
displayed for the schedules of the same days used for Figure 2. 

 

 
Figure 3 Largest cluster size as a function of the fraction of initially 

delayed flights (chosen at random) and initial delay. 

While April 19 was a normal day with low average delay, 
March 12 had the second largest average delay of the year, 
despite the fact that no major disruptive event was reported in 
the news. This implies that the network-wide propagation of 
delays was likely caused by internal mechanisms of the system; 
this conclusion is also supported by the fact that the surface 
representing the largest cluster size for March 12, compared to 
the one of April 19, is displaced toward smaller values of the 
initial delay intensity or fraction of delayed flights, indicating a 
higher susceptibility of the schedule to disruptive perturbations. 
Another remarkable property is that, regardless of the schedule, 
a non-negligible risk of systemic congestion can always be 
introduced by sufficiently strong primary delays. A picture 
where the initial delays are distributed randomly is not very 
realistic, since the direct impact of events such as storms, air 
controllers’ strikes or political riots is likely to be localized. To 
address this issue, simulations can be run with the real initial 
delays randomly shuffled between flights. The result, not 
shown here, leads to the conclusion that random perturbations 
can damage the system with much more ease than localized 
ones, probably because more airports are affected and a heavier 
burden is put on the smaller airports, which have a much more 
limited ability to react. 



 
Figure 4 Evolution of the largest cluster for October 27. The blue dots 

represent the model run with alpha equal to 0.26 and b equal to 1 for all airports 
during the whole day. The green dots represent the model run with reduced 
connectivity and capacities in the time and zone where the weather disturbance 
took place. 

For the worst day of the year, October 27, the extreme 
congestion was caused by meteorological conditions, which 
according to the news reports affected at least Hartsfield-
Jackson airport in Atlanta and the three main airports of the 
New York-New Jersey area: John F. Kennedy, La Guardia and 
Newark [20]. Average flight departure and arrival delay 
amounted to respectively 54 and 53 minutes, and the largest 
congested cluster contained 88 airports. 

 An in-depth analysis of this day can therefore provide 
useful insights on the resilience of the schedule to external 
perturbations and on the proper way of modeling such events. 
Some of the results obtained are shown in Figure 4, with more 
details available on [18].  

Without taking into account the perturbation, the evolution 
of the largest cluster obtained from the simulation is 
significantly different from the real one (although the 
qualitative features are reproduced), but this can be notably 
improved by just introducing changes in α and β localized in 
space and time.  

Finally, the question arises of whether the large congestion 
of October 27 was mainly caused by the weather, or intrinsic 
inefficiencies in the schedule played a significant role.  

To provide an answer, the same connectivity, capacity 
reduction and primary delays of October 27 can be applied to 
the schedule of another day in which no major problem 
occurred.  

Figure 5 illustrates the outcome of this procedure with the 
schedule of October 20: a large cluster still appears, leading to 
the conclusion that weather was indeed the main cause of the 
congestion. 
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Figure 5 Impact of the perturbation of October 27 on the schedule of 

October 20 

IV.  TREE MODELLING APPROACH 

The modelling of Complex Systems is still an important 
challenge in Science. The difficulty increases even further 
when the object of the models is to do predictions that can be 
tested against the normal working conditions of systems such 
as online social networks, pandemic propagation of diseases or 
cascade failures in transport networks. Since these systems 
contain a huge amount of heterogeneity and correlations, the 
only sensible technique to generate realistic simulations and 
testable predictions is to use a data-driven approach. 

In the particular case regarding ATM, these data must 
include daily schedules for flights and aircrafts in a set of 
airports. A good part of Western Europe or the full USA are 
large enough in traffic as to be prone to be subjected to this 
type of simulations. Smaller subsystems may show severe 
problems due to its reduced dimensions as larger fluctuations 
or a decrease in the simulations stability to uncertainty in the 
input conditions.  

The following sections describe how specific concepts and 
operations intrinsic to the European Air Transport network are 
being modelled and implemented in TREE. Special attention is 
paid to the input data as well as the expected simulation results. 

A. Network Nodes and Structure 

The input traffic sample is one-year ECAC traffic sample 
including the following data for each flight: Callsign, Actual 
Take Off Time (ATOT), Actual Off Block Time (AOBT), 
Departure Airport (ADEP), Destination Airport (ADES), flight 
Duration, Registration, Equipment, Type of Flight 
(regular/charter), Type of aircraft. The tool reproduces a 
reduced set of nodes (airports) of the European Air Transport 
Network. The vertices are represented by the aircrafts flying 
form one airport (node) to another. The propagation of the 
delays is represented by flight links related to flights using 
same aircraft, crew or passengers. The advantages in terms of 
computational tractability of modelling a simplified network 
are direct. It is an assumption common to most models of real 



networks that modelling in an explicit manner only the main 
nodes provides representative results of network performance. 
As discussed in [15], many empirical complex networks have a 
skeleton, implying that for developing a dynamical model of an 
empirical complex network it is enough to simulate only its 
skeleton, not requiring simulation on (or even knowledge of) 
the full network.  

B. Main features of the tool 

The existence of arrival and departure slots is the most 
relevant difference between air traffic in Europe and the US- in 
the latter case, only four airports have slots. Therefore, one key 
question is if and how the presence of slots affects the results 
already obtained for the US, both in the case of nominal 
working conditions and with external perturbations such as bad 
weather. 

1) Aircraft rotations 
The model is built using an agent-based approach with 

aircrafts playing the role of agents that are followed across 
their rotations. A daily schedule with the plane rotations and 
the expected departure and arrival time of the flight from/to 
each airport is thus necessary as an input for the model.  

The schedule can be generated artificially, this will be done 
whenever a theoretical analysis will be performed, but in order 
to obtain realistic outputs, the schedule must come from real 
data. Note that there is a difference between the initial daily 
planning of each airline [16] and the one really implemented 
recorded in performance databases as CODA (Central Office 
for Delay Analysis). The former is the plan advanced by the 
airlines regarding aircraft and crew rotations, while the latter 
includes all the changes introduced by airline managers to 
overcome unexpected conflicts such as cancelations due to 
weather or plan modifications due to mechanical issues. The 
model can work with any of the two daily plans. It could help 
even to optimize the pre-established plan in order to reduce 
delay propagation risks. However, CODA and RITA (Research 
and Innovative Technology Administration) data typically 
contain only schedules that were really implemented and these 
are, therefore, the main model inputs. 

2) Passenger Connections and Crew Rotations 
For the USA network, the level of connection between 

flights in each airport is determined by the statistical 
information available on the yearly passenger connections in 
each airport of the network. In TREE, the objective is not only 
to adapt these ideas to Europe, but also to go beyond by 
introducing real information on passenger connections. This is 
important because there exists an important variety in the 
connectivity level among the flights departing from the same 
airport. It is not only important in which airport the connection 
takes place, but also which the destination is and which is the 
real demand in each connection or route. This information will 
be included in the model in the moment in which a flight with 
delay arrives at an airport. This flight has then a certain 
probability of influencing other flights of the same company in 
a given time window from its scheduled arrival time. So far, 
the flights with connections of the passengers or crew were 

randomly selected, but this mechanism will be substantially 
improved by using market sector information. As for the crew 
rotations, it is the objective of TREE to identify a set of 
strategies applied by the airlines. However, since this is 
something directly related to airlines business, it is expected 
that information gathering is one of the challenges to be faced. 
For this reason, the methodology for the capture of airlines 
strategies for organizing the crew rotation is being materialised 
in interviews, distributing questionnaires among airlines and 
organizing brainstorming sessions among experts. The last was 
the objective of the workshop on Airlines Disruption 
Management held in Palma de Mallorca (Spain). 

 Representatives of all the actors involved in the disruption 
management process were invited as participants: airline 
representatives, network manager representatives (CFMU), 
airport operators, Air Navigation Service Providers, air traffic 
controllers, ground handling agents and overall ATM experts. 
Brainstorming sessions were oriented to the identification of 
airlines specific strategies in case of large disruptions 
impacting their operations. Thus, different case studies of 
interest were analysed in detail. These case studies will 
constitute the basis for implementing modelling scenarios. 

3) Airport Operations 
The next element to be considered, which affects flight 

performance, is airport operations. For each airport, if demand 
exceeds capacity the flights of all the companies departing 
during a time window get delayed. The delay affects more 
flights that may have to wait longer to be served or to be 
allowed to take off due to air space control restrictions. The 
effect of airport capacity limitation will be included in the 
model by introducing a queue system. For instance, in most of 
the US airports where the rule for service or for take-off is 
based on the protocol “first-arrived, first-served” a single queue 
system is enough to model airport operations with realism.  

In the case of the ECAC area, the operations are more 
complex due to the existence of ATFCM regulations. Queues 
for arrival, service and departure will be still used but the order 
and priorities will be determined by the slot allocation based on 
those regulations. In the TREE model, all these mechanisms 
will be taken into account. The slot management will be 
modelled in order to obtain realistic predictions for delay 
generation and propagation.  

4) Slot Management 
First of all, it will be assumed that the schedules obtained 

from the data correspond to real Airport slot allocation. That is, 
each flight with a certain scheduled departure or arrival time 
has Airport slots assigned.  

Different schedule allocations could be compared in terms 
of delay propagation in the system due to disruptions. 

For simplification, regulation will only be applied to 
departure and destination Airports, not to ACC or TMA 
sectors. Each airport will have a nominal capacity value which 
will define the maximum number of flights that can be 
operated per hour. This nominal capacity will be constant for 
all the simulation. 



Depending on the external event (i.e. meteorological event, 
security checks…) that is simulated, a reduction of the capacity 
affecting one or several airports will occur over a certain period 
of time.  

If with this reduction of capacity either the departure or the 
destination airport is not able to cope with the demand then a 
regulation will be imposed and an ATFM slot will be issued for 
the flights affected. For the flights not affected by a regulation 
the “First Planned- First Served” principle will be applied.  

When the regulation is activated, the model starts to analyse 
flight plans. Each flight concerned by the regulation is given a 
provisional slot based on the order of their Estimated Time 
Over (ETO) the restricted location (in this case will be the 
Estimated Take Off Time (ETOT) for departures  or Estimated 
Landing Time (ELDT) for arrivals). This slot is as close to the 
requested Estimated Time Over (ETO) the restricted location 
as it is available: 

• If that slot is free, it is assigned to the flight, which 
thus suffers no delay. 

• If that slot is already pre-allocated to a flight which is 
planned to depart or arrive from/to the restricted airport 
after the new flight, then the latter takes the slot. Of 
course, the consequence can be a chain reaction, 
because the flight whose slot has been taken tries to 
recover another slot, possibly by taking the slot of 
another flight, etc. 

• In case a flight is subject to regulation in both 
departure and destination airports, the most 
constraining regulation will prevail.  

The slot is an interval of time that goes from -5’ to +10’ of 
the CTOT (Calculated Take Off Time). The new Estimated 
Take Off Time of the flight will depend on the Taxi Time of 
the airport. Two hours before the Estimated Take Off Time the 
slot is fixed and not subject to modification. A mechanism of 
Slot Swapping will be implemented only if requested by the 
Aircraft Operator, with the following conditions: 

• The two concerned flights must have a slot issued; 

• The two flights must be subject to the same most 
penalizing regulation; 

• Only one swap per flight shall be accepted; 

• If an assigned slot could not be achieved by a flight, a 
new slot will be assigned for it.   

C. Input Data  

Passenger and flight traffic data are the key for modelling 
the skeleton of the air transport network. Aspects such as 
general connectivity level, primary delays and airport nominal 
capacities will define the conditions for operation. 

The input data are as follows: 

• Flight data: data sources like CODA, will provide data 
on daily flight plans with scheduled arrival and 
departure times of all the flights, along with the aircraft 
rotations. 

• Market sector data: will determine passenger 
connections between the different flights arriving and 
departing from each airport.  

• Parameter for the level of general connectivity level: 
Passenger connections are not the only factor that can 
produce reactionary delays in outgoing flights. Crew 
rotation is also important and even though some 
feedback on the typical airline practices is expected in 
this sense in the expert consultation, the model will 
have to include a stochastic mechanism to take into 
account this type of connectivity with a free parameter 
to tune its relevance. 

• Airports nominal capacity: there are two options for 
calculating Airports nominal capacity. The first one is 
based on extracting the information from input traffic 
samples (schedules). Still, the model will also include a 
free parameter that will allow us to modify the capacity 
globally or locally. The tuning of the parameter will 
make possible the simulation of situations such as bad 
weather conditions or labour issues affecting some 
airports. The second one is based on using published 
data, i.e.: via Airport Corner (web based application of 
EUROCONTROL) or European Network Operations 
Plan 2012-2014. 

• Primary delays: this information can come from real 
data as CODA, for instance to validate the model 
predictions. It can be also fake initial conditions 
generated to study some particular scenarios. For 
example, concentrating the delays in a certain airport 
or flights to test the system resilience by feeding then 
these primary delays into the model and analysing the 
unfolding of the corresponding delay trees in the 
network. 

D. Simulation Outputs 

The simulation outputs will be comparable to the 
performance data contained in CODA. Each model realization 
will generate a pattern of delay propagation from the primary 
delays on. It will include the list of affected flights, the airports 
they visited in their rotations as well as the status of each 
airport in terms of congestion along the day hour by hour. The 
advantage of the model is that besides this information it also 
allows for a detailed tracking of which flight causes the 
reactionary delays in subsequent flights (trees of delays). This 
extra information will be also part of the output, even though it 
is different from the actual performance data. 

It is important to stress that the results of each realization of 
the model will be tracking the delayed flights, the status of the 
airport or the causal relations between flights producing or 
suffering reactionary delays. However, given the stochastic 
nature of some of the model components and in order to carry 
out a serious analysis on the outcome, most of the metrics 
require the performing of statistics. The median of the different 
estimators will be considered, but also their fluctuations across 
model realizations. 



V. NEXT STEPS 

Next steps are oriented to the implementation of specific 
operations intrinsic to the European Air Transportation 
Network into the modelling tool. Then it will be the time to 
validate the tool to prove the suitability of the TREE modelling 
framework for analysing and tracking the tree of reactionary 
delays (making distinctions between delays, i.e. crew links, 
aircraft links, passenger links). Although some specific case 
studies of interest were identified during first project workshop, 
the challenge of capturing airlines strategies for crew and slot 
swapping remains there. Interviews with airlines 
representatives and a literature review focused on airlines 
disruption management will also be performed. Once a set of 
case studies is identified the experimental plan will be 
performed. The experimental plan will include the number of 
scenarios to be modelled, the number of exercises to be tested 
in each scenario and the list of metrics to be monitored. After 
simulations, a preliminary analysis of the results will be 
performed. Experts are expected to be the contributors for the 
final validation of the results. 

VI.  CONCLUSIONS 

Operating an aircraft within Europe is a very different 
scenario to that of the equivalent in the USA. The complexity, 
the varied governance, the diverse cultures and complicated 
liaison with differing bordering countries all contribute in 
severe contrast to the more simplified version of how the 
Federal Aviation Authority’s area of responsibility functions.  

Airline Disruption Management process is a transversal 
problem impacting several airline functions with different 
kinds of origins and root causes. The robustness of the airline 
schedule (including turnaround times) influences the 
propagation of reactionary delays.  

In this sense, the model that is being proposed from TREE 
would allow different actors testing different strategies giving 
highly valuable support in problem solving processes.  

The integrated approach to a very combinatorial problem 
based on aircraft, the flights, crew rotation, the airport slots and 
passenger re-accommodation is the key towards approaching 
an ideal solution.  
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