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Abstract—Methods for the calculation of optimal trajectories for 

conflict free Air Traffic Management (ATM) scenarios are pre-

sented. In those scenarios multiple aircraft have to cross an air-

space sector without violating the separation distance in an opti-

mal way. The aircraft are modeled using two dimensional kine-

matic models, as this is sufficient for the motions regarded here. 

Optimal control theory and a direct collocation scheme as well as 

multi criteria optimization methods are used to solve the problems. 

The goal of the optimizations is twofold: on the one side the overall 

costs should be minimized and on the other side the fairness of the 

scenario should be maximized. In this context, fairness can be ex-

pressed as the distribution of costs between the different aircraft. 

The principle is demonstrated using two simulation examples. 

Keywords-ATM scenario optimization, conflict resolution, 

optimal control, multi-criteria optimization 

I.  INTRODUCTION 

Several studies predict a further increase in air traffic in the 
skies above the overall world and especially above Europe. Even 
in the already lowered estimations of EUROCONTROL pub-
lished in September 2013 [1] the number of IFR (instrument 
flight rules) flight movements in 2019 is expected to be 10.8 mil-
lion which is 14% more than in 2012. In their long term forecast 
[2] a further growth is anticipated resulting in 40% more IFR 
flights in 2030 compared to the numbers for 2009. Besides this 
growth in air traffic, EUROCONTROL records more and more 
problems with the current air traffic management system. In the 
EUROCONTROL Performance Review Report 2010 [3], for 
example, it is stated that the number of en-route delays in 2010 
was worse than any year before since 2001. This shows the big 
need for new technologies and tools for the air traffic manage-
ment system supporting the controllers in their decision making. 

Multiple aircraft are involved in every conflicting air traffic 
scenario. In most cases they are all operated by different airlines 
that are competing on the market. Thus, every airline is inter-
ested in not only a safe solution of the conflict but also a cheap 
solution for their aircraft. In some scenarios the resolution of a 
conflict may be almost fully paid by one aircraft, or at least a 
small portion of the aircraft involved, if the optimal solution for 
the overall costs is calculated. Therefore, in this work, air traffic 
scenarios are not only optimized for the overall costs but also for 
the individual costs of every aircraft and the fairness by means 
of cost distribution. The resulting problem can be formulated as 
a multi criteria optimization problem. 

Various approaches to automatic conflict resolution have 
been suggested and investigated in the past. Zhao and Schultz 
[4], e.g., use optimal control methods to resolve conflicting tra-
jectories for two aircraft. They minimize the deviations from the 
intended flight paths and finally enforce each aircraft back to 
their trajectory via terminal constraints. In [5] Frazzoli et.al. use 
semidefinite programming to resolve conflicted trajectories in 
the horizontal plane. In contrary to that, in [6] Hu et.al. consider 
three dimensional aircraft movement and present an algorithm 
to calculate optimal solutions for two-aircraft cases and an ap-
proximation for the multiple-aircraft case. In [7], once again 
three dimensional problems are tackled and methods from opti-
mal control are used to calculate free-flight trajectories for mul-
tiple aircraft. Archibald et.al. in [8] describe a multiagent solu-
tion for solving conflicts based on satisficing game theory. In 
this theory a decision maker (in this case an aircraft) may sacri-
fice part of its achievement in case another decision maker can 
benefit from that. This way, the overall performance may be im-
proved for the cost of several individuals. This problem formu-
lation is close to the problem solved here but tackled quite dif-
ferently. In [9] Visser describes a method of optimizing the tra-
jectories for two aircraft in three dimensional space with respect 
to noise nuisance on ground. Vela et.al. in [10] present a conflict 
resolution algorithm that incorporates a controller work load 
model and is near-realtime capable. Once again, two dimen-
sional scenarios are considered. In [11] Chaloulos et.al. present 
a decentralized model predictive control scheme (MPC) for hi-
erarchical systems and use it to solve collision avoidance prob-
lems for unmanned aerial vehicles (UAVs). Besides the high 
level MPC approach, a low level controller is implemented that 
takes care of the internal dynamics of the aircraft. Here, a coop-
erative cost is used to ensure a certain level of fairness between 
individual and overall costs in the scenarios. The authors of [12] 
use a Mixed Integer Linear Program formulation to solve con-
flicts between arriving aircraft in a 4D approach scenario. Their 
objective is the minimization of the overall delay while keeping 
all inbound traffic conflict free. In [13] we calculated fuel mini-
mal approach trajectories using a two stage method. In the first 
stage the optimal approaches for all considered aircraft have 
been calculated while neglecting eventually arising conflicts. 
Then, in the second stage, the solution of the first stage has been 
used as an initial guess for the fully constrained optimal control 
problem where the conflicts were resolved. The results of this 
work are partly based on the results that have been published at 
the AIAA conference 2014 [14] by our group. 



The rest of this paper is organized as follows: In the next 
section the optimization problem to be solved will be stated in-
cluding the simulation model used, the separation constraint, the 
combination of multiple aircraft into one problem as well as the 
regarded cost functions and a definition of fairness. In section III 
some methods for the solution of the resulting multi criteria op-
timization problem are presented. Afterwards, in section IV the 
numerical results created by these methods are described and in-
terpreted. Finally, in V some conclusions are drawn and a short 
outlook is given. 

II. OPTIMIZATION PROBLEM 

The conflict resolution inside an ATM scenario is formu-
lated as an aircraft trajectory optimization problem that belongs 
to the mathematical class of optimal control problems. Within 
the next subsections the considered problem statement is given. 

A. General Multi Aircraft Trajectory Optimization Problem 

In general, a trajectory optimization problem involving 𝑁 

aircraft can be stated as follows (derived from the formulation 

in [15]): 

Determine the optimal control histories 

 𝒖𝑖,𝑜𝑝𝑡(𝑡) ∈ ℝ𝑚𝑖 ,          𝑖 = 1, … , 𝑁 (1) 

and the corresponding optimal state histories 

 𝒙𝑖,𝑜𝑝𝑡(𝑡) ∈ ℝ𝑛𝑖 ,          𝑖 = 1, … , 𝑁 (2) 

that minimize the Bolza cost functional  

 𝐽 = Φ(𝒙𝑖(𝑡𝑓), 𝑡𝑓) + ∫ ℒ(𝒙𝑖(𝑡), 𝒖𝑖(𝑡), 𝑡)𝑑𝑡
𝑡𝑓

𝑡0

 (3) 

subject to the state dynamics 

 𝒙̇𝑖(𝑡) = 𝒇𝑖(𝒙𝑖(𝑡), 𝒖𝑖(𝑡), 𝑡𝑖),        𝑖 = 1, … , 𝑁 (4) 

the initial and final boundary conditions 

 
𝚿0(𝑥𝑖(𝑡0), 𝑡0) = 𝟎,    𝚿𝟎 ∈ ℝ𝑝 

𝚿𝑓(𝑥𝑖(𝑡𝑓), 𝑡𝑓) = 𝟎,    𝚿𝒇 ∈ ℝ𝑞 
(5) 

and the equality and inequality path constraints 

 

𝑪𝑒𝑞(𝒙𝒊(𝑡), 𝒖𝑖(𝑡), 𝑡) = 𝟎,     

                 𝑪𝑒𝑞 ∈ ℝ𝑟 ,     𝑖 = 1, … , 𝑁 

𝑪𝑖𝑛(𝒙𝑖(𝑡), 𝒖𝑖(𝑡), 𝑡) ≤ 𝟎, 
                 𝑪𝑖𝑛 ∈ ℝ𝑠,   𝑖 = 1, … , 𝑁 

(6) 

Due to the complexity of the models and the constraints 

this problem cannot be solved by directly evaluating the opti-

mality conditions (i.e. using indirect methods). So, a direct trap-

ezoidal collocation scheme [15] is applied and the resulting pa-

rameter optimization problem is solved numerically using off-

the-shelf software. For that purpose, besides SNOPT [16], 

which is mainly used in the examples, also IPOPT [17], 

WORHP [18] or others can be used. Afterwards, the results for 

the discretized problem are interpolated to get an estimate of the 

solution to the original problem. 

B. Aircraft Simulation Model 

When considering air traffic management scenarios the in-

fluences of the inherent aircraft dynamics are negligible as the 

considered maneuvers are relatively slow and far away from the 

aircraft’s flight envelopes. Additionally, no wind influence is 

incorporated here. Thus, the aircraft dynamics can be modeled 

using pure kinematic relations. Moreover, the problems inves-

tigated here are only two-dimensional as they do not contain 

level changes. The formulation used would easily allow an ex-

tension to three dimensions, but this will lead to a significant 

increase in computational burden. Consequently, the position 

equations of motion in a locally fixed Navigation Frame for 

each aircraft 𝑖 = 1,2, … , 𝑁 are given by (7), where 𝑁 is the total 

number of aircraft considered. The coordinates 𝑥𝑖 and 𝑦𝑖  therein 

denote the position of the 𝑖th aircraft in the Navigation Frame. 

 
𝑥̇𝑖 = 𝑉𝐾,𝑖 ⋅ cos 𝜒𝐾,𝑖  

𝑦̇𝑖 = 𝑉𝐾,𝑖 ⋅ sin 𝜒𝐾,𝑖  
(7) 

These models are controlled by their respective velocity 𝑉𝐾,𝑖 

and their course angle 𝜒𝐾,𝑖. This leads to the following state and 

control vectors 𝐗𝑖  and 𝐔𝑖 for each aircraft: 

 
𝐗𝑖 = [𝑥𝑖 , 𝑦𝑖]T 

𝐔𝑖 = [𝑉𝐾,𝑖 , 𝜒𝐾,𝑖]
𝑇

 
(8) 

C. Separation Constraint 

In order to maintain safety of all involved aircraft a separa-
tion path constraint is added to the scenarios. This constraint has 
to be fulfilled along the whole trajectories of all aircraft. The 
minimum separation is given as 

 𝑑𝑚𝑖𝑛 = 5 NM = 9260 m. (9) 

As only the horizontal motion of aircraft is considered here, 
the distance between two aircraft can be calculated by 

 𝑑 = √(xi − 𝑥𝑗) 2 + (yi − 𝑦𝑗) 2 (10) 

In order to avoid the square root, the distance constraint can 
be reformulated and implemented as 

 𝑑min 
2 ≤  (xi − 𝑥𝑗) 2 + (y𝑖 − 𝑦𝑗) 2 (11) 

which is numerically more stable. 

In case of a scenario containing 𝑁 aircraft 𝑁𝑑 pairs of dis-
tance constraints have to be fulfilled, where 𝑁𝑑 is the number of 
possible aircraft combinations and evaluates to 

 𝑁𝑑 = (
𝑁
2

) =
𝑁 ⋅ (𝑁 − 1)

2
. (12) 

D. Combining Multiple Aircraft in one Problem 

Not all aircraft involved in an ATM scenario always remain 
inside the considered airspace for the same time. Some of them 
might enter earlier and also leave earlier while others remain in 
the considered airspace for a shorter or a longer time. To be able 
to compare the positions of all aircraft involved in the optimiza-
tion scenario anyway, they all have to be simulated in one com-
mon time domain. Besides the rather inflexible idea of partition-
ing the whole scenario into multiple phases where in each phase 
another combination of aircraft is active, in [14] a method to 
fade-out the dynamics has been proposed and will be used here. 

Therein, the aircraft dynamics are extended by two fading 
factors. One is used to activate the dynamics at the beginning of 
the trajectory based on time and the other one is used to fade out 
the dynamics at the final position based on the aircraft location. 
As in the examples shown here all aircraft start at the same point 
in time, only the fade-out part based on the position is required: 

 𝐗̇𝑖 = (
𝑥̇𝑖

𝑦̇
𝑖

) = (
𝑉𝐾,𝑖 ⋅ cos 𝜒

𝐾,𝑖

𝑉𝐾,𝑖 ⋅ sin 𝜒
𝐾,𝑖

) ∙ δx ∙ δy (13) 



The two fading factors can be calculated according to 

 δx =
1

2
tanh(𝑎 ∙ |𝑥 − 𝑥𝑓|) +

1

2
 (14) 

 δ𝑦 =
1

2
tanh(𝑎 ∙ |𝑦 − 𝑦𝑓|) +

1

2
 (15) 

with 𝑥𝑓 and 𝑦𝑓 being the final position of the aircraft. Depending 

on the actual flight direction, one of the two factors has to be set 
to one. The parameter 𝑎 used in (14) and (15) controls the steep-
ness of fading, where values too high result in very high gradi-
ents which is numerically problematic and values too low result 
in a very long and unrealistic fading. In the examples considered 
here, a value of 

 𝑎 = 1,0799 ∙ 10−2 ⋅ 1/𝑚 (16) 

turned out to be a good compromise after testing values for 𝑎 ∈
[10−3. .1]. It has to be mentioned that with this formulation the 
final boundary conditions cannot be given as equality constraints 
anymore but have to be specified as small ranges. This does not 
affect the solutions in practice. 

E. Cost Functions and Fairness 

For the sake of simplicity the costs generated by each flight 
are approximated by the flight time required to pass through the 
given sector. As no fast manoeuvers are performed, no height 
changes are considered and the velocities are strictly limited 
here, this assumption is reasonable. To be able to calculate the 
flight time even when considering the fading-out dynamics from 
above, the time 𝑡𝑖 for each aircraft is added as an additional state: 

 𝐗̇i = (

𝑥̇𝑖

𝑦̇𝑖

𝑧̇𝑖

) = (
𝑉𝐾,𝑖 ⋅ cos 𝜒𝐾,𝑖

𝑉𝐾,𝑖 ⋅ sin 𝜒𝐾,𝑖

1

) ∙ δx ∙ δy (17) 

This way, it is ensured that the time an aircraft requires to 
pass through the sector also stops when its motion stops. Then, 
the overall cost of one scenario results as 

 𝑡𝑠𝑢𝑚 = ∑ 𝑡𝑖,𝑓𝑖𝑛𝑎𝑙

𝑁

𝑖=1

 (18) 

Here, other cost functions like operational cost, fuel consump-
tion, emissions or a combination thereof can also be integrated 
into the simulation. 

Within the scope of this work, fairness means a decent dis-
tribution of costs to all aircraft inside a scenario. As not all air-
craft have the same distance to cross inside the considered sec-
tor, the absolute costs for crossing the sector are not a suitable 
means of comparison. Instead, a relative cost change is used for 
which the costs for each aircraft crossing the sector while ne-
glecting any other aircraft are calculated as a reference. Then, 
the relative increases of costs for resolving the conflicts, com-
pared to the reference, are calculated from 

 𝑐𝑖 =
𝑡𝑖,𝑓𝑖𝑛𝑎𝑙 − 𝑡𝑖,𝑓𝑖𝑛𝑎𝑙,𝑚𝑖𝑛

𝑡𝑖,𝑓𝑖𝑛𝑎𝑙,𝑚𝑖𝑛

∙ 100% (19) 

where 𝑡𝑖,𝑓𝑖𝑛𝑎𝑙  is the crossing time of the aircraft 𝑖 in the scenario 

with resolved conflicts and 𝑡𝑖,𝑓𝑖𝑛𝑎𝑙,𝑚𝑖𝑛 is the minimum crossing 

time of the aircraft 𝑖 if all other aircraft were neglected. A sce-
nario is treated as fair if these relative increases of costs are sim-
ilar. Considering numbers for the cost increases, see section IV. 

Hence, the goal of the optimization is to minimize every 

single cost increase 𝑐𝑖. Thus, the problem can be interpreted as 

a multi criteria optimization problem with the cost function vec-

tor containing one entry for each of the 𝑁 participants 

 𝐉 = (

𝑐1

⋮
𝑐𝑁

). (20) 

From a statistical point of view, the mean 𝑐𝑚 and the biased 

variance 𝑐𝑣𝑎𝑟  of these cost increases can be evaluated as 

 𝑐𝑚 =
1

𝑁
∑ 𝑐𝑖

𝑁

𝑖=1

 (21) 

and 

 𝑐𝑣𝑎𝑟 =
1

𝑁
∑(𝑐𝑖 − 𝑐𝑚)2

𝑁

𝑖=1

. (22) 

The variance of the relative cost increases of all aircraft may be 
considered as an alternative means of fairness which leads to an-
other multi criteria optimization problem with the cost function 
vector 

 𝐉 = (
𝑐𝑠𝑢𝑚

𝑐𝑣𝑎𝑟
) = (

∑ 𝑐𝑖

1

𝑁
∑(𝑐𝑖 − 𝑐𝑚)2

). (23) 

In this formulation, the minimization of the sum 𝑐𝑠𝑢𝑚 is equiv-

alent to the minimization of the mean 𝑐𝑚 and the minimization 

of the variance 𝑐𝑣𝑎𝑟  is equivalent to the minimization of the 

standard deviation 𝑐𝑠𝑡𝑑. 

III. MULTI CRITERIA OPTIMIZATION METHODS 

A lot of techniques exist for the solution of multi criteria op-
timization problems. Kaya, e.g., gives an overview of some 
methods applied to optimal control problems in [19]. Therein, 
different scalarization schemes are presented and compared. 

In [20] Lin categorizes multi objective optimization prob-
lems into min-norm and min-max problems and discusses sev-
eral solution strategies for both types. Miettinen [21] also gives 
an overview over several methods but classifies them by the way 
the decision maker is involved in the process. He mainly focuses 
on interactive methods, meaning that the decision maker ac-
tively influences the optimization process during runtime. 

Here, the problem is viewed in two different ways as stated 
in (20) and (23). For those two formulations different solution 
algorithms are applied and therefore presented below. 

A. Minimization of a weighted sum of costs 

An obvious choice when trying to optimize the presented 

ATM scenarios is a weighted sum of the single costs: 

 𝐽𝑆𝑢𝑚 = ∑ 𝑤𝑖 ⋅ 𝑐𝑖

𝑁

𝑖=1

 (24) 

When considering the relative cost increases for the different 

aircraft, all weights can be chosen as 

 𝑤𝑖 = 1        ∀𝑖 ∈ 1. . 𝑁 (25) 

as they are comparable anyway. As can be clearly seen, this op-

timization will result in the minimum overall costs without con-

sidering fairness. From a multi criteria optimization problem 

point of view, fixing the weights will result in one point in the 

approximation of the Pareto front. 



B. Minimization of a p-Norm 

To increase fairness more weight can be put on bigger cost 
increases and less weight on smaller ones by using a p-Norm 

 ‖𝑐‖𝑝 = (∑|𝑐𝑖|
𝑝

𝑁

𝑖=1

)

1
𝑝⁄

,       𝑝 > 1 (26) 

As the scenario with the conflicts is more constraint than the ref-
erence scenario, the cost functions can only be equal to or greater 
than the reference costs. Thus, all cost changes are positive: 

 𝑐𝑖 ≥ 0 , 𝑖 = 1, … , 𝑁 (27) 

With (27), (26) becomes 

 ‖𝑐‖𝑝 = (∑ 𝑐𝑖
𝑝

𝑁

𝑖=1

)

1
𝑝⁄

. (28) 

The optimization of a p-Norm within the context of multi criteria 
optimization has also been studied in [20] and [21]. 

C. Minimum Distance to Target Optimization 

Considering the problem formulation in (20) and including 

the wish to have a result that is as fair as possible, a minimum 

target optimization, as it is e.g. discussed in [20], can be used. 

In contrary to the previous formulations where the cost function 

values are directly minimized, now the square of the deviation 

from a user defined target cost is used as the criterion. With 𝑐𝑇 

being this target cost, the optimization criterion becomes 

 𝐽𝑇 = ∑(𝑐𝑖 − 𝑐𝑇)2

𝑁

𝑖=1

. (29) 

To be able to perform a minimum target optimization, a 

value for 𝑐𝑇 is required, whose estimation is quite challenging 

for ATM scenarios. Thus, an optimization minimizing the over-

all costs is performed here, before the minimum optimal cost 

value (regarding one aircraft) is scaled by 𝑘𝑇 and used as target: 

 𝑐𝑇 = min 𝑐𝑖 ⋅ 𝑘𝑇 (30) 

The factor 𝑘𝑇 can be tuned to shift the weight between overall 

costs and fairness inside a scenario and therefore can be used to 

estimate points close to the Pareto front of the problem – at least 

when chosen arbitrarily. It has to be mentioned that in this for-

mulation, deviations from the target value to lower cost values 

are penalized equally as deviations to higher cost values. 

D. Min-Max Optimization 

Another way of considering the distribution of the individ-

ual cost values is by minimizing the maximum thereof. This 

scalarization can be derived from the p-norm approach by mak-

ing 𝑝 infinitely large: 

 ‖𝑐‖∞ = lim
𝑝→∞

(∑ 𝑐𝑖
𝑝

𝑁

𝑖=1

)

1
𝑝⁄

= max
𝑖

(𝑐𝑖) (31) 

The resulting formulation is close to the Tchebychev sca-

larization that is suggested for multi criteria optimal control 

problems in [19], but with all weights set to one. In the imple-

mentation of this scheme an additional parameter 𝑐𝑚𝑎𝑥  is intro-

duced and minimized while a supplementary constraint ensures 

that all individual costs remain below this parameter. A prob-

lem that will arise when using this solution strategy is the fact 

that only the maximum cost function is minimized. All other 

cost functions may stay above their respective optimal values 

(but below the maximum cost function value, of course) and 

will not be further pushed down by the optimization algorithm. 

To tackle this problem the min-max approach can be extended 

to a limited minimum sum optimization that is presented in the 

next section. 

E. Limited Minimum Sum Optimization 

When using the minimum sum optimization, the overall 
costs become minimal without considering the fairness between 
the different participants. When using the min-max optimization 
the opposite holds. In this approach the aforementioned tech-
niques are combined. First, a min-max optimization is per-
formed, before the resulting maximum individual cost is used as 
a limit for all individual costs in the problem: 

 𝑐𝑖 ≤  𝑐max , 𝑖 = 1, … , 𝑁. (32) 

Afterwards, a minimization of the overall costs is performed 
to lower the costs for all participants that are not at their optimum 
yet. This method can be further extended by tightening the upper 
limit for any individual cost based on a parameter 𝑘𝑐: 

 𝑐𝑗 ≤ 𝑘𝑐 ⋅ max 𝑐𝑖 ,    𝑘𝑐 ≥ 1, ∀𝑖, 𝑗 ∈ .1. . 𝑁 (33) 

By tuning 𝑘𝑐, a reduction in the overall costs might be achieved 
and the weighting of the overall costs to fairness may be shifted. 
Consequently, for different values of 𝑘𝑐 an approximation of a 
Pareto front can be calculated. 

F. Minimization of Mean and / or Variance 

When considering the second formulation of the problem as 
stated in (23) another weighted sum formulation can be derived: 

 

𝐽𝑚𝑣 = 𝑤𝑚 ∙ (
𝐽𝑆𝑢𝑚

𝑁
)

2

+ 𝑤𝑣𝑎𝑟 ∙ 𝐽𝑣𝑎𝑟  

= 𝑤𝑚 ∙ 𝑐̅2 + 𝑤𝑣𝑎𝑟 ∙
1

𝑁
∑(𝑐𝑖 − 𝑐̅)2

𝑁

𝑖=1

. 

(34) 

Here, 𝑤𝑚 and 𝑤𝑣𝑎𝑟  are the weights for the two terms of the sum 
and have to be chosen arbitrarily. To be able to achieve a mean-
ingful comparison between both values, the mean has been 
squared – as the variance also is of second order. 

One possibility to choose the weights is setting one of them 
to zero and the other to one. When doing so, either a minimiza-
tion of the mean, which is equal to the minimization of the sum 
presented before, or a minimization of the variance results. The 
latter has also been implemented in the test scenarios. To ensure 
the quality of the solution by means of overall costs, an addi-
tional condition has been added to the calculations that limits the 
sum and therefore also the mean of the costs 

 𝑐𝑠𝑢𝑚 ≤ 𝑐𝑠𝑢𝑚,𝑚𝑖𝑛 ⋅ 𝑘𝑇            𝑘𝑇 ≥ 1 (35) 

where 𝑐𝑠𝑢𝑚,𝑚𝑖𝑛 is calculated by minimizing the overall costs. 

This condition ensures a maximum in the summed cost and 
therefore also a maximum in the mean. Different values for the 
scaling 𝑘𝑇 have been used in the examples leading to different 
optimal points. 

Another possibility for the weights would be to set both to 
one, which leads to an equivalent weighting of the mean and the 
variance but in some cases might not be numerically favorable. 
Thus, the weights might also be calculated based on a previously 
run minimization of the mean (indicated by the asterisk *). Then 



both parts of the sum can be weighted such that they lie within 
the same numerical range by choosing 

 
𝑤𝑚 =

1

(𝑐̅∗)2
=

1

(
1
𝑁

∑ 𝑐𝑖
∗𝑁

𝑖=1 )
2 

(36) 

and 

 
𝑤𝑣𝑎𝑟 =

1

𝑣𝑎𝑟(𝑐𝑖
∗)2

=
1

(
1
𝑁

∑ (𝑐𝑖
∗ − 𝑐̅∗)2𝑁

𝑖=1 )
2. 

(37) 

The calculations based on the two latter formulations only 

lead to one point each on the approximated Pareto front. Any-

way, choosing different combinations of 𝑤𝑚 and 𝑤𝑣𝑎𝑟  makes it 

possible to calculate multiple points. 

IV. NUMERICAL RESULTS 

In this section, the presented models are used to solve two 
example scenarios and the results are shown and interpreted. As 
mentioned before, all scenarios are discretized using a trapezoi-
dal collocation scheme while the numerical optimization is per-
formed using SNOPT or WORHP. All problems have been nor-
malized (scaled) and solved to a feasibility and optimality toler-
ance of 10−6. As the solutions to the optimal control problems 
have been calculated, the overall state and control histories are 
known. Anyway, they are mostly not shown here in detail as they 
do not contain valuable information for the analysis. 

It has to be mentioned that the increases due to the detours 
seem to be very small. Anyway, it is important to see them in 
relation to each other as these relations are a measure of fairness. 

A. Scenarios and cost minimal results (unfair) 

In these subsections the scenarios are introduced and the 

results for the minimization of the overall costs are shown. 

1) Scenario 1 

The first scenario consists of four aircraft that are posi-

tioned pairwise opposite to each other. The setup can be seen in 

Figure 1. The aircraft starting points are marked by triangles, 

their destinations by crosses. The intersection of the trajectories 

is located at the origin of the locally fixed frame; the starting 

positions are 40 NM and 45 NM out and the final positions are 

60 NM and 65 NM out. All boundary points are either located 

on the x-axis or on the y-axis, as can be seen in the figure. 

Additionally, Figure 1 shows the solution for this scenario 

when minimizing the overall costs. It can clearly be seen, that 

aircraft 3 and 4 have to fly a noticeable detour while aircraft 1 

and 2 are hardly affected by the solution of the conflict. Hence, 

in this scenario the cost minimal solution is not desirable for all 

parties. The numerical results for the relative increases in the 

flight time – compared to the conflict free scenario – and the 

total time for each aircraft can be seen in Table 1. The cost in-

creases have a mean of 𝑐𝑚 = 0.465 % and a variance of 𝑐𝑣𝑎𝑟 =
0.115 % resulting in a standard deviation of 𝑐𝑠𝑡𝑑 = 0.339 %. 

TABLE I.  COST FUNCTION VALUES FOR SCENARIO 1 

Aircraft Number Total Flight time Cost increase 

1 1066 s 0.170 % 

2 1172 s 0.106 % 

3 1074 s 0.917 % 

4 1178 s 0.668 % 

 

Figure 1 Cost minimal solution for scenario 1 

2) Scenario 2 

Three aircraft are involved in the second scenario. They all 

start at an x-position of 𝑥0 = −50 𝑁𝑀. Their y-positions are 

spread regularly in 10 𝑁𝑀 steps with the middle aircraft being 

positioned on the x-axis. They are all starting at the same time 

and need to mirror their y-positions until the end of the sector 

that is located at 𝑥𝑓𝑖𝑛𝑎𝑙 = 50 𝑁𝑀 (see Figure 2). 

 
Figure 2 Cost minimal solution for scenario 2 

Once again, the solution minimizing the overall costs is 

shown in Figure 2. In this scenario the relative increase of costs 

for aircraft 1 is 𝑐1 = 3.724 % the relative increase for aircraft 2 

is 𝑐2 = 0.452 % and the increase for aircraft 3 also is 𝑐3 =
3.724 %. Consequently, the mean in this scenario is 𝑐𝑚 =
2.627 % while the variance is 𝑐𝑣𝑎𝑟 = 2.362 % and the standard 

deviation is 𝑐𝑠𝑡𝑑 = 1.537 % which is quite high. 

B. Multi criteria optimization results (fair and cost efficient) 

As the pure cost minimal results have been shown, now, 

the results of the different approaches for a fair optimization of 

the scenarios – always also minimizing the overall costs – are 

presented. For means of comparison, the results for mean and 

variance are shown here, although they are not the real criterion 

for Pareto optimal points in the first problem formulation (20). 

1) Scenario 1 

When using the p-norm approach with 𝑝 = 2 the mean of 

the costs in the first scenario becomes 𝑐𝑚 = 0.468 % while the 

variance is 𝑐𝑣𝑎𝑟 = 0.327 %. As can be seen from Figure 3, the 
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results are very similar to the ones created by a minimization of 

the sum. The same holds for the optimization of the mean and 

the variance and a weighting of 𝑤𝑚 = 𝑤𝑣𝑎𝑟 = 1. The results 

created by the minimization of the maximum costs, which in 

this case is equal to the limited minimum sum optimization if 

𝑘𝑐 = 1, tend to be better in fairness and a little worse in the 

overall costs. The results for the minimum target optimization 

as well as the results for the minimization of the variance 

strongly depend on the chosen parameters. The results for some 

selected parameters are shown in Figure 4 and Figure 5. 

 
Figure 3 Results in mean and standard deviation for scenario 1. 

 

Figure 4 Optimal mean and standard deviation for different parameters 𝑘𝑇 
in scenario 1 using the minimum target optimization. 

When plotting the mean cost increases over the cost in-

crease standard deviations for the different optimization meth-

ods, an approximation of the Pareto front of the problem may 

be drawn. Figure 6 shows the results for the different methods 

in different colors. It can clearly be seen that not one optimal 

solution in mean and standard deviation exists but that by im-

proving the one the other gets worse. This behavior is as ex-

pected in a multi criteria optimization problem. In this example 

a preferable point may be identified at the very left of the dia-

gram as there the improvement in the standard deviation would 

be far greater than the increase of the mean. 

 

Figure 5 Optimal mean and standard deviation for different parameters 𝑘𝑐 in 

scenario 1 using the minimum variance optimization. 

2) Scenario 2 

The results for scenario 2 are quite different from those of 

scenario 1 as the problem is far more interconnected and the 

cost increases are far higher. The minimum mean in the costs 

can again be achieved by minimizing the overall costs (of 

course) but this time this increase is 𝑐𝑚 = 2.63 % with a stand-

ard deviation of 𝑐𝑠𝑡𝑑 = 1.54 %. Figure 7 shows the mean and 

the standard deviation for the minimum square optimization (p-

Norm with 𝑝 = 2), the minimization of the maximum and the 

optimization of mean and variance both weighted by one 𝑤𝑚 =
𝑤𝑣𝑎𝑟 = 1. It is striking that the Min-Max optimization is able 

to reduce the variance to zero with a comparably small increase 

in the mean of the costs. Once again, here these results are equal 

to the ones of the limited minimum sum optimization if 𝑘𝑐 = 1. 

The trajectories and controls that result in that case can be 

seen in 8 and are quite different from the trajectories that were 

calculated for minimum overall costs in Figure 2. 
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Figure 6 Approximation of the Pareto front in mean and standard deviation for scneario 1. 
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Figure 7 Results in mean and standard deviation for scneario 2. 

 

 
Figure 8 Optimal trajectories for the Min-Max optimization for scenario 2 

and the corresponding control inputs (velocity remains at maximum 
value all the time for all aircraft). 

 

Figure 9 Mean and standard deviations for different scaling parameters 𝑘𝑇 
in the minimum target optimization for scenario 2. 

When using the minimum target optimization for the sec-

ond scenario with different parameters (Figure 9) the results are 

quite similar to the results calculated in the first example. Once 

again, the cost increases with increasing scaling factors 𝑘𝑇 

while the standard deviation simultaneously decreases. 

The results for the minimization of the variance with dif-

ferent parameters 𝑘𝑐 look very similar to the results in scenario 

1 and can be seen in Figure 10. Anyway, the numeric values are 

far bigger, as the scenario is generally more “expensive” to 

solve. Thus, in this scenario an increase in fairness can be 

achieved with a comparably low relative increase in the mean. 

 

Figure 10 Optimal mean and standard deviation for different parameters 𝑘𝑐 in 

scenario 2 using the minimum variance optimization. 

Min-Sum Min-Square Min-Max Min-Mean and Var
0

1

2

3

4

[%
]

 

 

Mean

Standard deviation

-60 -40 -20 0 20 40 60
-20

-10

0

10

20

x [NM]

y
 [
N

M
]

-60 -40 -20 0 20 40 60
-20

0

20

x [NM]

y
 [
N

M
]

0 200 400 600 800 1000
300

320

340

360

time [s]

v
e

lo
c
it
y
 [
k
ts

]

0 200 400 600 800 1000

-50

0

50

time [s]

c
o

u
rs

e
 a

n
g

le
 [
d

e
g

]

0.1 0.25 0.5 0.75 1 2 3 4 5
0

0.5

1

1.5

2

2.5

3

3.5

k
T

[%
]

 

 

Mean

Standard deviation

1.001 1.004 1.008 1.02 1.04 1.06 1.08 1.1 1.2
0

0.5

1

1.5

2

2.5

3

3.5

[%
]

k
c

 

 

Mean

Standard deviation

 
Figure 11 Approximation of the Pareto front in mean and standard deviation for scneario 2. 
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When comparing all methods for scenario 2 and plotting 

the mean of the costs against their standard deviation the result 

is quite similar to the result created in scenario 1. These results 

can be seen in Figure 11.This time, all optimal points are lo-

cated on one clean line which is very likely to be the real Pareto 

front of the problem as formulated in (23). All methods taken 

together form a clear impression of the achievable performance 

in that scenario. 

Moreover, here no significant point by means of huge de-

creases in one dimension bringing relatively small increases in 

the other can be found. So, the human decision maker is chal-

lenged and no preferable point can be detected. 

V. CONCLUSIONS AND OUTLOOK 

In the paper at hand methods for optimizing ATM scenarios 
with respect to overall costs and cost distribution were pre-
sented. The goal of the method is the calculation of trajectories 
in conflicting scenarios that are on the one side as cost-efficient 
as possible, but on the other side do not burden the cost to one 
or little of the participants in the scenario. The problem was for-
mulated as a multi criteria optimal control problem. This prob-
lem was first transcribed into a parameter optimization problem 
by direct collocation methods. Afterwards, the resulting multi 
criteria parameter optimization problem can be tackled by dif-
ferent scalarization techniques to obtain a regular parameter op-
timization problem. In the paper at hand several methods have 
been used and tested in two examples. 

The results of the calculations show that no method is supe-
rior to any other – neither in the results nor in computational 
time. Instead, all methods are able to calculate some points that 
are somewhere close to the Pareto front of the overall problem. 
In scenario 1, the limit optimization is a little inferior to the other 
methods. Using a combination of the methods presented, a good 
approximation for the Pareto front may be found – depending on 
the scenario considered. In most of the scenarios no preferable 
solution exists in which either the mean or the variance could be 
lowered without significantly increasing the other. So, finally, 
the decision for one point inside the solution still remains with 
the decision maker, i.e. the human controller.  

The presented study was a very first study on the topic as no 
other publication is known to the authors where multi criteria 
optimization is combined with optimal control to calculate opti-
mized solutions for ATM conflicts. As such, there of course is a 
lot of potential for future research. First of all, further investiga-
tions on Pareto optimality of the calculated points can be done. 
Furthermore, the cost functions used here are only based on time 
which is a first approximation of the real costs and can be ex-
tended to much more realistic models. Besides the aircraft cost 
functions, also controller workload and the number of maneu-
vers might be considered as both are crucial to safety. Moreover, 
uncertainties in the scenarios like wind may be added. And fi-
nally, more sophisticated methods to solve multi criteria optimi-
zation problems, like parameter sweeps over a Tchebychev sca-
larization, could be applied and used within a study considering 
real Pareto optimality. 
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