Conflict free trajectory optimisation for complex departure procedures

Santi Vilardaga  
CTAE-ASCAMM  
Cerdanyola del Vallès, Barcelona (Spain)  
Email: santi.vilardaga@ctae.org

Xavier Prats  
Technical University of Catalonia  
Castelldefels, Barcelona (Spain)  
Email: xavier.prats@upc.edu

Abstract—4D trajectory optimisation has showed good potential to reduce environmental impact in aviation, increase capacity and improve the efficiency of the operations. The research described in this paper proposes a dynamic optimiser for complex (and realistic) lateral and vertical trajectories, defined by a set of waypoints that define a flight plan. Different routes can be optimised independently, producing a vertical, lateral and speed profile that burns the minimum fuel. Additionally, may one conflict arise between two independent trajectories, each aircraft will recompute its optimal trajectory with separation assurance constraints defined as a cylindrical protection zone. Examples are given for standard instrumental departures at Barcelona and Reus airports. Different results are shown for strategies that allow both lateral and vertical deviations, or vertical deviations only. In a highly automated air traffic system the framework described in this paper enhances the situational awareness of the airspace user by providing information of the ownship energy state in accordance to the separation with the surrounding traffic.

I. INTRODUCTION

The improvement of air transport efficiency (in terms of economic and environmental impact) is one of the major drivers for research and development in the SESAR and NextGen programmes. New technologies and procedures for future air traffic management (ATM) and on-board systems and operations are being investigated and proposed. Initiatives such as Continuous Climb Departures (CCD), Continuous Cruise Climb (CCC), and Continuous Descent Approaches (CDA) propose good fuel reduction in specific phases of the flight. However, such operations usually come with a negative impact in air traffic capacity, given the vast typologies of aircraft and hence diversity in vertical and speed profiles [1].

To this end, algorithms and methods that improve efficiency and capacity in the airspace whilst maintaining, if not improving, safety are being proposed. For example, several research has been done in the integration of CDAs in dense TMAs [2], [3]. The Oceanic Tailored Arrivals program, currently in place in San Francisco airport [4], is another relevant example. These arrivals are supported by the Efficient Descent Advisor (EDA) developed by NASA-AMES, which is able to compute conflict-free optimal descent trajectories and satisfy a given arrival fix metering [5]. Being the EDA a ground based system, it lacks from accurate aircraft performance data, since airspace users in general, do not publish what they consider is subject to confidentiality.

One requirement for efficient flow of air traffic is accurate knowledge of aircraft positions and adequate prediction of future aircraft movements. Without accurate information, maintaining safe separation between aircraft requires much more conservative, and therefore less efficient, methods [6], [7]. Moreover, a large scale implementation of these optimised trajectories (i.e. not only for a small set of aircraft but for all those in a dense and complex TMA) remains an issue that will obviously require more levels of automation.

Nowadays, the literature on optimal arrival trajectories is very extended when compared to that regarding optimised aircraft departures. Still, some studies are investigating this aspect, for example [8], [9], [10]). However, the de-confliction with other trajectories (namely CDA or CCD) is a big technical challenge to address. Usually, separation assurance on the TMA (for arriving and departing trajectories) is ensured at a strategic level, imposing altitude and velocity constraints at the standard procedures (e.g. departures level off at 6000ft until clear of arriving traffic). Additionally, the operating air traffic ATCo may enforce the separation at a tactical level if required. Such operations prevent the aircraft to fly optimised trajectories (which would be continuous climb or descent operations), increasing fuel and pollutant emissions and producing a larger noise impact in the vicinities of the airport. Besides, new enhanced operations allow for a window of opportunity to optimise (or deconflict) where there previously was a traffic corridor.

Via an own developed trajectory optimisation framework and following previous research presented in [11] this paper aims at the optimisation of conflict free trajectories in a dense traffic area, accepting separation constraints with surrounding traffic. Using an A320 dynamic model, we generate a very fast initial guess of the trajectory, that is immediately afterwards optimised using a continuous multiphase optimal control problem formulation, taking into account spatial and temporal constraints. We are using our algorithms to show results on how two conflictive departures can be optimised whilst maintaining safety levels with self separation strategies.

This paper is organised as follows. Section II lays out the dynamic model of the aircraft, the problem formulation and the trajectory modelling in multiple phases. Section III enhances the optimisation framework to accept separation assurance constraints. Section IV describes the scenarios and results that
II. OPTIMISATION FRAMEWORK

Trajectory modelling and optimisation has been a subject widely researched in the last decades. Analytically, this optimisation problem can be formally written as a continuous optimal control problem and extensive research on its resolution can be found in the literature. However, realistic trajectories are hardly impossible to solve analytically and a wide variety of numerical solutions have arisen. One of the most relevant ones involves the direct transcription of the problem, leading to a non-linear programming (NLP) problem with a finite set of decision variables [12]. This approach sets-up the basic theoretical background for the research proposed in this paper.

A. Equations of motion

For this research, we are using a point-mass representation of the aircraft, where forces apply at its centre of gravity. For the initial assessment proposed in this paper, a winds calm and assuming a constant mass of the aircraft, the equations of motion are written as follows [8]:

\[
\begin{align*}
\frac{dv}{dt} &= \dot{v} = \frac{1}{m}(T - D - mg \sin \gamma) \\
\frac{d\gamma}{dt} &= \dot{\gamma} = \frac{q}{\rho v} (n_z \cos \phi - \cos \gamma) \\
\frac{d\chi}{dt} &= \dot{\chi} = \frac{q}{\rho v \cos \gamma} n_z \\
\frac{dn}{dt} &= \dot{n} = v \cos \gamma \cos \chi \\
\frac{de}{dt} &= \dot{e} = v \cos \gamma \sin \chi \\
\frac{dh}{dt} &= \dot{h} = v \sin \gamma \\
\frac{ds}{dt} &= \dot{s} = v \cos \gamma
\end{align*}
\]

(1)

where \( n \) and \( e \) represent the spatial location of the aircraft in north and east coordinates respectively, \( h \) is the geometric altitude, \( v \) is the true airspeed, \( \gamma \) the aerodynamic flight path angle, \( \chi \) the heading and \( \phi \) the bank angle. Also, \( s \) represents the along track distance, calculated to take into account some constraints that depend on it. The load factor \( (n_z) \) is defined as the relation between the aerodynamic lift force and the aircraft weight.

Regarding the atmosphere, the International Standard Atmosphere [13] model is considered, which defines the density \( \rho \), pressure \( p \) and temperature \( \tau \) magnitude as functions of the altitude. The following normalised magnitudes are also used in this paper:

\[
\delta = \frac{p}{p_0} ; \quad \theta = \frac{\tau}{\tau_0} ; \quad \sigma = \frac{\rho}{\rho_0} ; \quad (2)
\]

where \( p_0, \tau_0 \) and \( \rho_0 \) are, respectively the standard pressure, temperature and density values at sea level.

B. Drag and thrust models

The aerodynamic drag is given as a function of the drag coefficient \( (C_D) \), dynamic pressure \( (q) \), and wing reference area \( (S) \) as:

\[
D = C_D q S. \quad (3)
\]

The total drag coefficient \( C_D \) is expressed as a function of the lift coefficient \( C_L \) and the Mach number \( M \). This relationship considers air compressibility effects, which cannot be neglected for nominal cruising speeds of typical commercial aircraft (between M.78 and M.82 approximately). In this paper, a polynomial fitting similar to the model proposed in [14], giving a very accurate approximation of the drag coefficient:

\[
C_D = C_{D0} + K_1 (C_L - C_{L0})^2 + C_{Dsb}(\beta) \quad (4)
\]

where \( C_{Dsb} \) accounts for the speedbrakes contribution and \( \beta \in [0, 1] \) is the speedbrake lever position.

Coefficients \( C_{D0}, K_1 \) and \( C_{L0} \) depend on the flaps/slats setting and \( M \). For each aircraft configuration these coefficients are obtained after a fitting function process with aircraft aerodynamic data obtained from manufacturer’s performance databases:

\[
\begin{align*}
C_{D0} &= C_{D0min} + \Delta C_{D0M} M \\
K_1 &= K_{i min} + \Delta K_{iM} M + \Delta K_{i2} M^2 \\
C_{L0} &= C_{L0min} + \Delta C_{L0M} M + \Delta C_{L02} M^2.
\end{align*}
\]

Regarding the engine model, Airbus A320 throttle positions \( \pi \) directly command the revolutions of the engine fan \( (N1) \). The throttle also takes values in the interval \([0,1]\) and is modelled as:

\[
\pi = \frac{N1 - N1_{idle}}{N1_{max} - N1_{idle}}. \quad (6)
\]

The maximum revolutions of the engine fan \( N_{1max} \) and the residual revolutions, when the throttle is set to zero \( (N1_{idle}) \) are also modelled with a 3rd degree polynomial approximation as:

\[
\begin{align*}
N1_{max} &= \sum_{i=0}^{3} \sum_{j=0}^{3} c_{ij}^{max} \theta^i M^j \\
N1_{idle} &= \sum_{i=0}^{3} \sum_{j=0}^{3} c_{ij}^{idle} \theta^i M^j. \quad (7)
\end{align*}
\]

Following the same methodology, engine thrust \( (T) \) and fuel flow \( (FF) \) are also modelled by a third order polynomial as a function of the reduced revolutions of the engine fan \( (N1/\sqrt{\theta}) \) and the Mach number:

\[
\begin{align*}
T &= n_e \delta \sum_{i=0}^{3} \sum_{j=0}^{3} c_i^{T} \left( \frac{N1}{\sqrt{\theta}} \right)^i M^j \\
FF &= n_e \delta \sqrt{\theta} \sum_{i=0}^{3} \sum_{j=0}^{3} c_i^{FF} \left( \frac{N1}{\sqrt{\theta}} \right)^i M^j. \quad (8)
\end{align*}
\]
being \( n_e \) the number of engines of the airplane.

C. Problem formulation

Optimal control problems are usually non-linear and generally do not have analytic solutions so it is required to employ numerical methods to solve them [12], [15]. The most popular approach is to convert the infinite-dimensional original problem into a finite-dimensional NLP problem in the time interval \([t_0, t_f]\). To do so, a collocation strategy is performed, being Euler, Trapezoidal or Pseudospectral among the most used [16]. The value of \( t_f \) is a decision variable itself and will be fixed by the optimisation algorithm.

Let \( x(t) \in \mathbb{R}^{n_x} \) be the state vector describing the trajectory of the aircraft over the time \( t \), \( u(t) \in \mathbb{R}^{n_u} \) the control vector that leads to a specific trajectory and \( p \in \mathbb{R}^{n_p} \) a set of control parameters not dependent on \( t \). The goal is to find the best trajectory that minimises the following optimisation objective:

\[
J(t) = \int_{t_0}^{t_f} FF(x, u, p, t) \, dt. \tag{9}
\]

Using the equations of motion and aerodynamic forces described above, we have formulated an optimal control problem, the solution to which minimises the fuel consumption as defined in (9). The state and control vectors are defined as follows:

\[
x = [v \, \gamma \, \chi \, n \, e \, h]
\]

\[
u = [n_z \, \phi \, \pi]. \tag{10}
\]

Since the operating manuals of the aircraft give minimum and maximum operating speeds in calibrated airspeed (CAS), we add an extra constraint equation to relate this speed with the true airspeed that appears in (1):

\[
v_{\text{CAS}} = \sqrt{\frac{2\rho_0}{\mu \rho_0} \left[ \delta \left( \frac{\mu v^2}{2R_t} + 1 \right)^{\frac{\gamma}{2}} - 1 \right]^{\mu} - 1} \tag{11}
\]

where \( \mu = \frac{\gamma a - 1}{\gamma - 1} \), being \( \gamma_a \) the specific heat ratio of the air and \( R \) the perfect gases constant.

Table II-C depicts the constraints considered in the optimisation problem. Many of these are operational constraints, either to stay within the flight envelope or comply with ATM constraints such as ground obstacle avoidance (PDG). Additionally, bounding constraints on \( n_z \) and \( \phi \) where defined following usual civil aviation standards. More information on optimal control formulation techniques used in this research can be found in [17], [18].

Finally, some collocation and link equations ensure that the different state nodes (collocation points) within a phase are correctly linked to the previous, following the different dynamic models, and that the phases relate to the time continuum they represent as explained in the following subsection.

\[
\begin{array}{ll}
\text{Constraint} & \text{Definition} \\
\hline
\text{Operating airspeeds} & V_{\text{MCA}} \leq v_{\text{CAS}}(t) \leq V_{\text{MO}} \\
\text{No deacceleration allowed} & \dot{v}(t) \geq 0 \\
\text{No descent allowed} & h(t) \geq 0 \\
\text{Procedure Design Gradient (PDG)} & h(t) \geq 0.333 \, \text{s}^{-1} \\
\text{Load factor} & 0.85 \leq n_z(t) \leq 1.15 \\
\text{Bank angle} & -25 \leq \phi(t) \leq 25
\end{array}
\]
and vice versa. Hence, a trade-off must be sought [18].

This strategy allows the use of phases to define the lateral (and vertical) route. With this, we are able to compute a full trajectory from a set of initial conditions to a set of final conditions, including one or more RTA in waypoints along the route using a constrained multi-phase optimal control problem.

III. CONFLICT FREE OPTIMISATION

Having different trajectories being modelled in a scenario, the main challenge remains in modelling the separation assurance constraint. Current ATC procedures specify lateral and vertical separation independently given the big difference in dynamics between the horizontal and vertical plains: either 3Nm or 5Nm in horizontal and 1000ft or 2000ft in vertical space, depending on technical and environment related aspects [19]. Thus, we consider a conflict if there is a risk of an aircraft entering this protection volume, unless deviation manoeuvres are deployed. This could lead to a loss of separation and eventually to a near mid-air collision or ultimately a fatal encounter.

In a futuristic scenario, we could envisage that the aircraft themselves are responsible for keeping separation amongst each other, thus delegating ATC responsibilities to the pilot. Current developments on that aspect depend on the use of airborne separation assurance systems (ASAS) [20]. The experiments within this paper assume such paradigm is in place.

Besides, collaboration between aircraft is an important issue to address. A very utopic scenario would assume a fully collaborative situation where centralised trajectory optimisation is possible due to downlink of aircraft performance data and intends. Nowadays, airlines are very wary on providing such information to other airspace users. Hence, another (less collaborative) solution is to use a flight plan or flight intends to predict other aircraft trajectories. This solution relies on ADSB/C data or the implementation of collaborative methodologies such as AIDL [21] or SWIM [22]. In such case, a conflicted user can perform ownership optimisation separating from other predicted traffic. This paper explores a possible implementation and implications of this semi-collaborative scenario where an aircraft, instead of receiving performance data from other traffic, computes its own optimal deviation to avoid the conflict over a predicted intruder trajectory.

A. Separation assurance

NLP solvers demand each and every constraint to be continuous and twice differentiable, and it is obvious that a cylinder does not comply with this. To solve this issue one can describe the following disjunction:

$$g_h(t) \geq 0 \lor g_v(t) \geq 0 \quad (12)$$

being $g_h$ and $g_v$ the horizontal and vertical constraints respectively, which can be reformulated with continuous variables as described in [23] as follows:

$$\lambda_h(t)g_h(t) + \lambda_v(t)g_v(t) \geq 0$$
$$\lambda_h(t) + \lambda_v(t) = 1$$
$$\lambda_h(t), \lambda_v(t) \geq 0$$

being $\lambda_h$ and $\lambda_v$ two continuous variables that, with the second and third constraints in (13) enforce the logical OR in this formulation.

Other strategies could bring better convergence to the algorithm with the cost of less accurate solutions. This would be the case for example of a sphere [24], an ellipsoid [25] or a superegg\(^1\). All these are geometrical forms that can be expressed by a single equation and, specifically to our problem, enforce separation by form of inequations. In contrast to the current cylindrical specification, the sphere is highly inaccurate in the term that treats lateral and vertical separation equally and ellipsoids are also very inaccurate at the extremes (e.g. the vertical separation is lost soon when going towards the edges). Supereggs on the other side are similar to ellipsoids but maintain the vertical separation longer. They can be represented by the following equation:

$$\left(\frac{n^2 + e^2}{\lambda h^2}\right)^2 + \left(\frac{-h}{d_v}\right)^2 \geq 1$$

(14)

where $d_h$ and $d_v$ are the required horizontal and vertical separation respectively, and $n$, $e$ and $h$ the state variables as defined in (1).

Even if it is out of the scope of this paper to thoroughly study each strategy, we have implemented both the cylindrical disjunction described in (13) and the supereggs inequation described in (14). The first because is represents exactly the current operations; and the second because they are still quite an accurate representation of the protection volume, but present less non-linearities for the model, and thus performs very well on the optimisation engine.

B. Intruder trajectory modelling

As presented previously in this section, our problem requires an aircraft to recalculate an optimal trajectory with potential conflicts with other traffic. We have explained in section II how do we model the ownership. In III-A we lay down some strategies for the aircraft to keep distance from a target object in space. The remaining challenge is how to model a moving target in our optimisation problem.

Our approach to this has been to represent the state of the moving target following polynomials that depend on time. Because a trajectory can be a very complex curve, we rely on polynomial fitting to model a predicted reference trajectory [26]. To this end, we assume that we have a high fidelity representation of the intruder’s trajectory as a list of points in time and space. In our case, we are not actually relying on trajectory prediction strategies, but we are actually optimising the route of the intruder first, and then passing the resulting trajectory over to the ownership. Then, this list of 4D points is

\(^1\)http://en.wikipedia.org/wiki/Superegg
modelled into curves represented by basis splines (B-splines) using the open source library einspline\(^2\).

A Cubic B-spline is a continuous twice-differentiable function represented by piecewise polynomials of order three. As opposed to higher degree polynomials, these provide an accurate fitting and have been demonstrated to perform well with NLP optimisation [17] as they can be very smooth.

Effectively, this solution has proved very reliable, robust and with good performance in our simulations. Our approach is to create three splines that represent the intruder’s north, east and altitude coordinates over time. At the optimisation process, the ownship will iteratively call these curves that represent the dynamic obstacle at each time of sampling \((t)\).

Figure 1 depicts the flow of events of an aircraft (ownship), separating from an intruder in our framework.

\[
\begin{align*}
\begin{array}{c}
\text{initial state} \\
\{n_0, e_0, h_0, t_0\}
\end{array}
\quad \rightarrow \quad \begin{array}{c}
\text{Optimiser} \\
\rightarrow \quad \text{ADS-B}
\end{array}
\quad \begin{array}{c}
\text{intruder} \\
\rightarrow \quad \text{Out}
\end{array}
\end{align*}
\]

\[
\begin{align*}
\begin{array}{c}
\text{Ownership} \\
\{n_0, e_0, h_0, t_0\}
\end{array}
\quad \rightarrow \quad \begin{array}{c}
\text{Optimiser} \\
\rightarrow \quad \text{Splines} \\
\rightarrow \quad \text{ADS-B}
\end{array}
\quad \begin{array}{c}
\text{conflict-free} \\
\text{optimised} \\
\text{trajectory}
\end{array}
\end{align*}
\]

Fig. 1. Flow of events of aircraft separation on this paper

In the case where there is still a will for collaboration, both aircraft (and ATC) would agree on which trajectory is effectively deviating from the optimal, given a set of comparable variables, such as consumed fuel, the resulting time of arrival, etc.

C. Fixed lateral route

In current concept of operations, standard procedures are in place to force the lateral route to aircraft so conflicts are prevented at a strategic point. Therefore, we have implemented an option in the optimisation framework that removes the lateral freedom to the optimised trajectory. Thus, all deviations to avoid a conflict will be in altitude and speed profiles. The resulting trajectories are compared to show the impact of such restrictions in the results section.

To model the lateral trajectory, we are again using splines. Since we have already demonstrated the benefits of them in the intruder trajectory, we are following a similar approach. In this case, we are generating the curves for the horizontal coordinates with respect to the along track distance \(s\). Then, the \(n\) and \(e\) variables in the state vector will be constrained following these splines over \(s\):

\[
\begin{align*}
n(t) &= \Gamma_n(s(t)) \\
e(t) &= \Gamma_e(s(t))
\end{align*}
\]

where \(\Gamma_n\) and \(\Gamma_e\) are the splines modelling the lateral movement of the aircraft.

IV. Numerical example

The optimisation framework developed in this paper uses a combination of C++ and General Algebraic Modeling System (GAMS)\(^3\) source code. GAMS is used for the facility it gives of implementing optimal control problems and the multiple NLP solver engines to which it links seamlessly. This characteristic allows for the different optimisation needs to be easily tested with different constraints and solvers without much effort. On the other side, a C++ wrapper to the optimisation engine (written in GAMS) has been developed to allow for a more flexible definition of the scenarios, the generation of a guess and eased the interface with the splines library described in section III-A.

This design allows for dynamic definition of scenarios via waypoints and operational constraints as coming from a flight plan. For the purpose of this paper, we have prepared two scenarios following real life operations in two major airports in the Catalonia region. First scenario departs Barcelona airport (LEBL) on the west configuration through GRAUS3W departure. Second scenario departs Reus airport (LERS) to the east flying the BCN1S SID. At Barcelona, the west configuration is chosen by default, even in slight tail wind conditions (up to 10kts). In such case, Reus would have the east configuration.

Figure 2 shows the lateral route for both trajectories (respectively red and blue) as resulting from the optimiser, overlaid to the charts defined in the AIP[27], [28]. An Airbus A320 model has been considered for both departures and the lateral routes have been described as a list of waypoints as described in previous sections, assuming a flat non-rotating earth on a calm winds situation.

If figure 2, it is clear how BCN1S makes a big detour to strategically minimise potential conflicts with traffic departing from Barcelona. Indeed, if we describe a direct route to BCN VOR/DME after the initial climb (9NM from RES VOR/DME), the resulting trajectory is much more efficient than BCN1S (let us call this third route DIRECT). However, the strategic separation assurance strategy implemented in the AIP is lost and hence the appearance of conflicts is more likely to occur. We present a case where the separation between one aircraft flying DIRECT and another one flying GRAUS3W is less than the required protection zone (see case A in figure 3). Even so, in a futuristic scenario, where self-separation is in place, this new trajectory is worth studying.

We then define a self-separation strategy with 3NM (case B) and 5NM (case C) as a horizontal constraint and 1000ft in the vertical domain. We deliver results on how much should this proposed trajectory deviate from the optimal in figure 4, 5 and

\(^2\)http://einspline.sourceforge.net/

\(^3\)https://www.gams.com
Fig. 2. Published standard instrumental departures for Barcelona (blue) and Reus (green) and optimised trajectories for Barcelona departure GRAUS3W (light blue) and Reus departure BCN1S (red).

Fig. 3. Vertical and horizontal separation between the trajectories in cases A, B and C.

Fig. 4. Lateral profiles for the different optimised routes over the AIP charts for Reus and Barcelona.

The horizontal deviations shown in 4 for some of the trajectories, may not be acceptable for current operations.
given the lack of lateral freedom in the standard terminal procedures. This scenario is also studied in this paper as case H with the model described in section III-C. The results are less optimal, but still much better than the current SID.

Table IV shows the different characteristics and results for the cases A to H in a summarised form.

Finally, such study can be also extended to include other passing traffic (i.e. more than one intruder trajectory in the problem). Besides, it could also include descending trajectories. In a scenario were many trajectories have to be checked when designing a new standard procedure, the optimisation framework described in this paper provides good advise.

V. CONCLUSION AND FURTHER WORK

In this paper we have described a framework for optimising 4D trajectories in a lateral, vertical and speed profile perspective, while keeping separation to other traffic. We use direct collocation methods to convert the complex problem to a continuous multiphase optimal control problem that is solved with NLP techniques.

We consider a semi-collaborative scenario where trajectory predictions are shared between airspace users. This framework will be extended to accept different degrees of collaboration. First, a fully collaborative scenario in a futuristic automated environment where optimisation is done globally to all aircraft. Then, a complete un-collaborative scenario, where the only known data from the intruder is the current state vector. Given the fact that the trajectory estimation in this last case will be very inaccurate, techniques for target tracking and conformance monitoring will be introduced. Hence, recalculations will occur either when new information arrives, or when the tracker alerts of a deviation from the expected trajectory.

We have presented a not far from the reality scenario where our framework could be used as a decision support tool when designing a new procedure in an area with the confluence of many trajectories. Given the flexibility on the definition of scenarios in our tool, many other cases could be easily modelled. Besides, this could also be used with incoming vs outgoing traffic, very interesting nowadays that the new procedures (CDA, CCD, etc.) are more and more practiced and old traffic corridors become obsolete.

Finally, as explained in the results section we have encountered potential issues with local minima with the cylinder disjunction, whereas these are not seen when using supereggs. The impact of the different separation assurance techniques will have to be further investigated.
TABLE II
SUMMARY OF COSTS FOR THE DIFFERENT CASES

<table>
<thead>
<tr>
<th>Scenario</th>
<th>Route</th>
<th>Separation</th>
<th>Time (s)</th>
<th>Dist (NM)</th>
<th>Fuel (Kg)</th>
<th>Time Diff (s)</th>
<th>Dist Diff (m)</th>
<th>Fuel Diff (Kg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ref</td>
<td>GRAUS3W</td>
<td>None</td>
<td>1279.48</td>
<td>227684.68</td>
<td>1534.80</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Ref</td>
<td>BCN1S</td>
<td>None</td>
<td>1483.40</td>
<td>270583.45</td>
<td>1682.63</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Case A</td>
<td>DIRECT</td>
<td>None</td>
<td>1142.71</td>
<td>203131.42</td>
<td>1440.61</td>
<td>-360.49</td>
<td>-64752.03</td>
<td>-242.02</td>
</tr>
<tr>
<td>Case B</td>
<td>DIRECT</td>
<td>Cylinder - 3NM / 1000ft</td>
<td>1139.71</td>
<td>203512.29</td>
<td>1442.52</td>
<td>-3.00</td>
<td>380.87</td>
<td>1.91</td>
</tr>
<tr>
<td>Case C</td>
<td>DIRECT</td>
<td>Cylinder - 5NM / 1000ft</td>
<td>1140.83</td>
<td>203576.35</td>
<td>1445.62</td>
<td>-1.88</td>
<td>244.93</td>
<td>5.01</td>
</tr>
<tr>
<td>Case D</td>
<td>GRAUS3W</td>
<td>Cylinder - 3NM / 1000ft</td>
<td>1280.96</td>
<td>227667.03</td>
<td>1539.74</td>
<td>1.48</td>
<td>-17.65</td>
<td>4.94</td>
</tr>
<tr>
<td>Case E</td>
<td>GRAUS3W</td>
<td>Cylinder - 5NM / 1000ft</td>
<td>1280.93</td>
<td>227634.93</td>
<td>1537.96</td>
<td>1.45</td>
<td>-49.75</td>
<td>3.16</td>
</tr>
<tr>
<td>Case F</td>
<td>GRAUS3W</td>
<td>Superreg - 3NM / 1000ft</td>
<td>1281.91</td>
<td>227671.89</td>
<td>1535.80</td>
<td>2.43</td>
<td>-12.79</td>
<td>1.00</td>
</tr>
<tr>
<td>Case G</td>
<td>GRAUS3W</td>
<td>Superreg - 5NM / 1000ft</td>
<td>1282.61</td>
<td>227634.03</td>
<td>1536.12</td>
<td>3.13</td>
<td>-50.65</td>
<td>1.32</td>
</tr>
<tr>
<td>Case H</td>
<td>DIRECT</td>
<td>Cylinder - 3NM / 1000ft</td>
<td>1107.06</td>
<td>203131.42</td>
<td>1451.15</td>
<td>-35.55</td>
<td>0.00</td>
<td>10.54</td>
</tr>
</tbody>
</table>

ACKNOWLEDGMENT

The authors would like to thank Airbus Industrie for the use of PEP (Performance Engineers Program) suite, which allowed us to undertake realistic aircraft performances simulations. Also, GTD for their support on the use and adaptation of the einsline library.

REFERENCES