Interactions between Operations and Planning in Air Traffic Control

Thibault Lehouillier1, 2 \hspace{1cm} Jérémy Omer1, 2
Francois Soumis1, 2 \hspace{1cm} Cyril Allignol3

1École Polytechnique de Montréal
2Groupe d’Études et de Recherche en Analyse de Décisions
3École Nationale de l’Aviation Civile

May 29, 2014
Sommaire

Context and Motivations

Simulation Algorithms

Experimental Design

Experimental Results and Analysis

Conclusions and Perspectives
Plan

Context and Motivations

Simulation Algorithms

Experimental Design

Experimental Results and Analysis

Conclusions and Perspectives
Different Layers of the Air Traffic Management

Different layers corresponding to different time horizons:

1. Airspace management filter:
 - define the structure of the route network
 - define navigation rules
 - divide the airspace between sectors with given capacities

Different layers corresponding to different time horizons:
Different Layers of the Air Traffic Management

Different layers corresponding to different time horizons:

1. Airspace management filter:
 - define the structure of the route network
 - define navigation rules
 - divide the airspace between sectors with given capacities

2. Air Traffic Flow Management (ATFM):
 - file flight plans a few hours before planned take-off
 - regulate traffic to enforce sector capacities with ground-holding (CASA)
Different Layers of the Air Traffic Management

Different layers corresponding to different time horizons:

1. Airspace management filter:
 ▶ define the structure of the route network
 ▶ define navigation rules
 ▶ divide the airspace between sectors with given capacities

2. Air Traffic Flow Management (ATFM):
 ▶ file flight plans a few hours before planned take-off
 ▶ regulate traffic to enforce sector capacities with ground-holding (CASA)

3. Air Traffic Control (ATC) where controllers:
 ▶ monitor sectors;
 ▶ ensure safe transitions between sectors;
 ▶ maintain separation between aircraft at all times.

Figure 1: Vertical and horizontal separation
Present and future: what is at stake?

1. Present situation:
 - airspace congested in Europe
 - costly delays crucial to companies
 - few conflicts to solve for controllers
Present and future: what is at stake?

1. Present situation:
 - airspace congested in Europe
 - costly delays crucial to companies
 - few conflicts to solve for controllers

2. Questions needing answers for the future:
 - what will future traffic look like?
 - how will regulations adapt to this future traffic?
 - what economic outcomes can be expected?
 - how to be better prepared?
Our contributions

Based on an air traffic simulator we:

- simulate future French traffic up to 2035
- design different regulation scenarios
- compute ground-holding costs and ATC costs
- perform a traffic and cost analysis
Plan

Context and Motivations

Simulation Algorithms

Experimental Design

Experimental Results and Analysis

Conclusions and Perspectives
The whole picture

Figure 2: Experimental design
Traffic increase

Procedure parametrized by a multiplying factor f (i.e. 40%):

- go from n flights to $n_+ = n(1 + f)$ flights:
 - 1. choose random flights to be duplicated
 - 2. apply a small perturbation on departure time

- same random seed used: consistent increase

- maintain a similar temporal distribution of flights
Ground-holding regulation: CASA Algorithm

Computer Assisted Slot Allocation (CASA)

- Allocates slots for take-off
- Greedy heuristic (FIFO fashion)
- one delay value for each overflown regulated zone
- assigned delay: maximum delay over all overflown regulated zones
Traffic simulation and conflict resolution

Traffic simulator: Complete Air Traffic Simulator (CATS)
- time-discretized execution model
- aircraft specifications and performances extracted from BADA tables
- detailed outputs: traffic statistics, sector occupancy, conflicts data
Traffic simulation and conflict resolution

Traffic simulator: Complete Air Traffic Simulator (CATS)
- time-discretized execution model
- aircraft specifications and performances extracted from BADA tables
- detailed outputs: traffic statistics, sector occupancy, conflicts data

Air conflict resolution used:
- genetic algorithm from Durand(1996)[4]
- embedded in CATS
Plan

Context and Motivations

Simulation Algorithms

Experimental Design

Experimental Results and Analysis

Conclusions and Perspectives
Traffic predictions

Data extracted from EUROCONTROL forecasts[2, 1]

<table>
<thead>
<tr>
<th>Scenario</th>
<th>Global Growth</th>
<th>Regulated Growth</th>
<th>Happy Localism</th>
<th>Fragmented World</th>
</tr>
</thead>
<tbody>
<tr>
<td>2012-2019</td>
<td>3.4%</td>
<td>2.3%</td>
<td>2.3%</td>
<td>0.9%</td>
</tr>
<tr>
<td>2019-2020</td>
<td>3.7%</td>
<td>2.2%</td>
<td>1.5%</td>
<td>0.6%</td>
</tr>
<tr>
<td>2021-2025</td>
<td>2.5%</td>
<td>1.9%</td>
<td>1.5%</td>
<td>0.8%</td>
</tr>
<tr>
<td>2026-2030</td>
<td>2.2%</td>
<td>1.5%</td>
<td>1.2%</td>
<td>0.4%</td>
</tr>
<tr>
<td>2031-2035</td>
<td>1.9%</td>
<td>1.2%</td>
<td>1.1%</td>
<td>0.7%</td>
</tr>
</tbody>
</table>

Table 1: Summary of flight forecast for Europe until 2035

<table>
<thead>
<tr>
<th>Year</th>
<th>2014</th>
<th>2017</th>
<th>2020</th>
<th>2025</th>
<th>2030</th>
<th>2035</th>
</tr>
</thead>
<tbody>
<tr>
<td>Increase</td>
<td>+5%</td>
<td>+12%</td>
<td>+20%</td>
<td>+32%</td>
<td>+42%</td>
<td>+50%</td>
</tr>
</tbody>
</table>

Table 2: Traffic predictions with Regulated Growth
Airspace Capacity

Nominal sector capacities for France were used:

- different from actual regulation
- remains a valid indicator

Two scenarios of simulations:

- S_1: the actual regulation is applied with unchanged capacities
- S_2: no ground regulation is applied
Airspace Capacity

Nominal sector capacities for France were used:
- different from actual regulation
- remains a valid indicator

Two scenarios of simulations:
- S_1: the actual regulation is applied with unchanged capacities
- S_2: no ground regulation is applied

Extreme situations to challenge both:
- ground regulation: assigning take-off slots under high demand (S_1)
- ATC regulation: conflict resolution with numerous aircraft (S_2)
Choice of historical data

Week of French traffic from 2012:

- high volumes, especially on 6/8
- consistent differences between computed delays and actual delays

<table>
<thead>
<tr>
<th>Date</th>
<th>Number of flights</th>
<th>Computed delays (min)</th>
<th>CFMU delays (min)</th>
</tr>
</thead>
<tbody>
<tr>
<td>6/6</td>
<td>8656</td>
<td>1835</td>
<td>4503</td>
</tr>
<tr>
<td>6/7</td>
<td>8723</td>
<td>1875</td>
<td>8845</td>
</tr>
<tr>
<td>6/8</td>
<td>9053</td>
<td>16086</td>
<td>15505</td>
</tr>
<tr>
<td>6/9</td>
<td>8469</td>
<td>5708</td>
<td>13215</td>
</tr>
<tr>
<td>6/10</td>
<td>8786</td>
<td>11075</td>
<td>10924</td>
</tr>
<tr>
<td>6/11</td>
<td>8817</td>
<td>5507</td>
<td>11449</td>
</tr>
<tr>
<td>6/12</td>
<td>8618</td>
<td>4739</td>
<td>8006</td>
</tr>
<tr>
<td>Average</td>
<td>8731.7</td>
<td>6689.3</td>
<td>10349.5</td>
</tr>
</tbody>
</table>

Table 3: Traffic statistics from 2012/6/6 to 2012/6/12
Delay costs

Delay costs need to account for:

- passenger costs
- crew costs
- maintenance costs
- subsequential delays
Delay costs

Delay costs need to account for:
- passenger costs
- crew costs
- maintenance costs
- subsequential delays

Data used: model designed by EUROCONTROL and Westminster University[3]
- cost function of delay magnitude and type of aircraft involved
- data stored in tables

<table>
<thead>
<tr>
<th>Delays (min)</th>
<th>15</th>
<th>60</th>
<th>120</th>
<th>240</th>
</tr>
</thead>
<tbody>
<tr>
<td>B744</td>
<td>1230</td>
<td>20760</td>
<td>120940</td>
<td>213950</td>
</tr>
<tr>
<td>A320</td>
<td>410</td>
<td>6800</td>
<td>35280</td>
<td>63530</td>
</tr>
</tbody>
</table>

Table 4: Tactical costs (euros, total) of ground holding delay
Maneuvers costs

Three types of maneuvers issued:

- speed changes
- heading changes
- ascent interruption or descent anticipation
Maneuvers costs

Three types of maneuvers issued:
- speed changes
- heading changes
- ascent interruption or descent anticipation

Costs computed as extra fuel cost:
- define nominal speed with BADA performances
- compute fuel consumption on original flight plan at nominal speed C_{nom}
- compute fuel consumption during the maneuver C_{man}
- the extra cost is the difference $C_{\text{nom}} - C_{\text{man}}$
Plan

Context and Motivations

Simulation Algorithms

Experimental Design

Experimental Results and Analysis

Conclusions and Perspectives
Simulations without conflict resolution (1/2)

Figure 3: Entering flow per hour for different traffic volumes on KR control sector

(a) +0%
(b) +32%
(c) +42%
(d) +50%
Impact of ground-holding regulation

Figure 4: Comparison of the number of conflicts observed with and without CASA
Simulations without conflict resolution (2/2)

Impact of ground-holding regulation:

- prevents flight aggregation into peaks ↔ eases controller’s task
- smoothes the flow over the day
- reduces the number of conflicts for heavily loaded sectors
Ground-holding regulation costs

Figure 5: Cost of ground-holding regulation (in euros)
ATC costs

Figure 6: Deconfliction costs and maneuvers per hour
 Costs Analysis

1. Regarding ground-holding regulation costs:
 ▶ grow exponentially with traffic volume
 ▶ due to larger peak periods, hence larger delays
 ▶ millions of euros could be saved by removing capacities

2. Regarding ATC deconfliction costs:
 ▶ remain small compared to ground-holding costs
 ▶ removing capacities increase resolution costs by 15%
 ▶ removing capacities dramatically increases workload
 ▶ conflict situations more and more difficult to solve

3. How to take advantage of this information?
 ▶ cf. SESAR project [5]
 ▶ higher degree of automation
 ▶ design a new regulation
Plan

Context and Motivations

Simulation Algorithms

Experimental Design

Experimental Results and Analysis

Conclusions and Perspectives
Scientific contributions

- Simulations on future traffic extrapolated from real-life data
 - increased traffic based on detailed forecasts
 - insight into future traffic conflict situations

- Study of interactions between ground-holding regulation and ATC:
 - Millions of euros can be saved daily by removing sector capacities
 - Additional ATC effort increases cost by 15%
 - Controllers’ workload increases dramatically

- Have an insight into future solutions:
 - design a regulation better adapted to dense traffic
 - need of highly automated tools to decrease workload
Perspectives

Future work will focus on:

1. follow more detailed forecasts

2. introduce an hybrid scenario S_3:
 - determine new capacities
 - control ground holding regulation costs
 - control increase in controller’s workload

3. perform the same study on direct routes
References I

- **Eurocontrol long-term forecast: IFR flight movements 2013-2035.**

- **Eurocontrol medium-term forecast: IFR flight movements 2013-2019.**

- **A. J. Cook and G. Tanner.**
 European airline delay cost reference values. 2011.

- **N. Durand, J. Alliot, and J. Noailles.**
 Automatic aircraft conflict resolution using genetic algorithms.

- **SESAR Joint Undertaking.**
 European ATM master plan, edition 2.