
Queueing Models for Operations in NextGen  
 

Tasos Nikoleris, Mark Hansen 
Department of Civil and Environmental Engineering 

University of California at Berkeley 
Berkeley, CA, USA 

nikoleris@berkeley.edu 
 
 

AbstractÑ  This paper develops a queueing model for trajectory-
based aircraft operations, expected to take place in the Next 
Generation Air Transportation System. Aircraft are assigned 
scheduled times of arrival at a server, which they meet with some 
normally distributed stochastic error. A recursive queueing 
model is formulated, and Clark's approximation method is 
employed to estimate each flightÕs expected queueing delay. The 
model is further developed to account for aircraftÕs runway 
occupancy time, and to track any aircraftÕs delay through a 
network of servers.   
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I.  INTRODUCTION  
The nation's air transportation system (NAS) will 

incur major transformations in the coming years, 
developing towards the so-called Next Generation 
Air Transportation System (NextGen). NextGen 
features a shift from the current static system of 
routes and sectors to one that is adaptive to weather, 
traffic, and user preferences. Users will exchange 
coordinates information and supply the Air 
Navigation Service Provider with greater amounts of 
information about future traffic demand. This will be 
used to anticipate and resolve conflicts well in 
advance, reducing the need for tactical air traffic 
control. It will also allow controlled times of arrival 
into busy terminals, weather-impacted airspace, and 
other bottlenecks. This transformation is expected to 
greatly reduce human operator workload and 
significantly increase airport and airspace capacity. 

The motivation for this research is the fact that 
the ability to control and predict 4D aircraft 
trajectories (4DT) with high precision is a 
cornerstone of NextGen. 4DT capability, with time 
being the fourth dimension, is defined as the ability 
to precisely fly an assigned 3D trajectory while 
meeting specified timing constraints on arrival at 
waypoints [1]. This will allow high density flows 
that rely on controlled times of arrival for critical 

resources, including entry and exit to/from airspaces, 
taxiways, and runways [1]. Thus, in this research we 
assume that an aircraft’s flight path includes a series 
of waypoints (that can be either points in the 
airspace or the runway’s threshold) that the aircraft 
has to cross at a scheduled time. In other words, we 
assume that under 4DT operations aircraft will be 
metered at fixes. 

However, even with the deployment of the very 
best 4D trajectory precision and navigation tools, 
adherence to 4D trajectories will not be perfect. 
Sources of imprecision include airframe-to-airframe 
variation in aerodynamic performance, limitations in 
wind prediction capability, variations in flight crew 
technique, and varying degrees of exactitude in 
navigational performance [1]. As the NAS evolves 
from its current state to a future condition where 
location precision is maximized, a spectrum of 
trajectory uncertainty will be manifested. It will 
range from low precision, corresponding to today's 
operations in the NAS, to high precision, brought on 
by full deployment of precision navigation and 4DT 
trajectory awareness tools. For a comparison of 
delays corresponding to the two ends of this 
precision spectrum, see [2]. While the models for 
such cases are well established, it is far more 
challenging to consider intermediate levels of 
stochasticity. Such cases are far more representative 
of the future NAS, in which trajectory adherence 
will be imperfect. Thus, the objective of this paper is 
to model aircraft operations in NextGen using 
queueing theory, in a way that accounts for levels of 
trajectory uncertainty in all intermediate phases of 
precision navigation deployment.  

Existing analytical queueing models typically 
assume that the aircraft arrival process at an airport’s 
terminal airspace area is a non-homogeneous 



Poisson process [3]. However, for trajectory-based 
operations in NextGen, the Poisson-arrivals 
assumption does not capture the concept of metered 
aircraft operations. Thus, a queueing model with 
arrivals that are scheduled to a server is proposed in 
this paper, to analyze flight delays in a high-
precision trajectory-based operational environment, 
as currently being planned for NextGen.  

Within transportation engineering context, 
queueing models with scheduled arrivals have been 
proposed to study port operations. Sabria and 
Daganzo [4] examine single server queueing 
systems where customers must be served in an order 
that is specified by a timetable, i.e. in a First-
Scheduled-First-Served (FSFS) order. Each 
customer has a scheduled time of arrival at the 
server, where they actually arrive with some 
stochastic lateness (positive or negative). Exact 
transient solutions are obtained for the case when the 
lateness distribution is Gumbel, and service times 
are deterministic. In the present paper though, 
stochastic deviations from scheduled times of arrival 
are assumed to follow a Normal distribution, while 
the rule of FSFS service is maintained.  

The rest of the paper is organized as follows: 
Section II presents the general form of our model 
and discusses the applicability of Clark’s 
approximation method to obtain estimates for the 
expected queueing delay of each airplane. In Section 
III the model is further developed to handle 
aircraft’s runway occupancy time as a separate 
random variable. Moreover, the model is extended 
to estimate delays when aircraft traverse two 
consecutive servers. That constitutes the analysis 
unit for a network of queues. Finally, Section IV 
summarizes our main findings and conclusions.  

 

II. THE MODEL AND AN APPROXIMATE SOLUTION 
A. Model Formulation 

Our queueing system consists of a single server, 
which is a fix (either a point in the airspace or a 
runway’s threshold), and of airplanes that must cross 
this fix. Aircraft are assigned scheduled times of 
arrival at the fix, and they fly 4D trajectories to 
arrive at the fix just on time. However, due to 
imprecision in trajectory adherence, aircraft’s actual 
time of arrival at the fix has some stochastic 

deviation from its scheduled arrival time. The 
sources of imprecision might include airframe-to-
airframe variation in aerodynamic performance, 
limitations in wind prediction capability, variations 
in flight crew technique, and varying degrees of 
exactitude in navigational performance [1]. In 
addition, consecutive aircraft must maintain a 
minimum headway h for safety reasons, which can 
vary over pairs of arriving aircraft. Since air traffic 
controllers impose the exact values for h, we 
consider it as a deterministic variable in our model 
that reflects a particular air traffic control policy 
initiative. Moreover, we assume that h is the binding 
constraint among all factors that may affect the 
minimum required separation between consecutive 
aircraft.    

Following Sabria and Daganzo’s approach, each 
airplane i has an arrival time at the server Ai that 
consists of a deterministic and a stochastic portion. 
The deterministic component ai is the scheduled 
arrival time at the fix, while the stochastic 
component is denoted as  

Ai  and represents the 
lateness (positive or negative) with which the 
aircraft arrives at the fix, due to imprecision in 
trajectory adherence. Therefore, we have 

 Ai = ai + Ai . 

The first key assumption in our model is that 
deviations  

Ai 's are small enough, such that serving 
aircraft on a FSFS order will not result in excessive 
delays. As an order of magnitude, NextGen planners 
foresee accuracies of   seconds in aircraft meeting 
scheduled times of arrival [5]. Under a FSFS queue 
discipline, the actual time airplane i departs from the 
server, Di, would be Ai if there were no queue at the 
server by the time it arrived, or the time the previous 
scheduled aircraft i-1 crossed the fix plus a 
minimum required separation headway hi-1,i between 
the two aircraft. The actual times that aircraft cross 
the fix under study would then be:  

D1 = A1
Di = max Ai ,Di−1 + hi−1,i( ), ∀i ≥ 2  

If there were no stochasticity in the system, the 
deterministic time of departure from the server 
would be:  



di =max ai ,di ! 1 + hi ! 1,i( ), " i # 2  

Accounting for stochasticity, the departure time 
from the server of airplane i is: 

 Di = di + !Di  

The distribution of the stochastic component  
!Di  

clearly depends on  
Ai , which captures all stochastic 

effects that cause flight i to arrive at a time other 
than its scheduled one ai : 

  
D1 = A1  (1a) 

 
 
Di = max ai + Ai ,di−1 + Di−1 + hi−1,i( )− di ,∀i ≥ 2  (1b) 

The second pivotal assumption is that the vector 
of stochastic errors  

!Ai  follows a multivariate normal 
distribution with zero means (without loss of 
generality), standard deviations σ i , and a covariance 
structure ! :  

A  Normal (0,Σ) . The normality 
assumption stems from the observation that the 
probability distribution for  

Ai  is generated by 
convolving the individual distributions of low-
correlated stochastic factors. It should be 
emphasized though, that  

!Ai 's do not represent 
factors such as severe weather or en-route 
congestion that cause significant amounts of delays; 
lateness effects due to such factors have already 
been incorporated in the estimation of scheduled 
arrival times ai.  

In practice, values for schedule deviation   could 
be aggregated to represent classes of aircraft that 
have similar capabilities of adherence to 4D 
trajectories. For example, one could assume two 
different values for the standard deviation, σ A  and 
! B , in order to roughly represent aircraft with and 
without Area Navigation (RNAV) and Required 
Navigation Performance (RNP) capabilities. 
B. Solution with Clark’s Approximation Method 

In (1), for i = 2  both terms of the max operator 
are normally distributed. The max operation on 
normal random variables, in contrast to the add 
operation, does not yield a normal random variable. 
A well-known result due to Clark [6] derives 

analytical formulas for the mean and variance of the 
maximum of two normally distributed random 
variables. Let X and Y be normally distributed 
random variables, X ~ N(µX ,! X )  and 
Y ~ N(µY ,! Y ) , ρ  represent the correlation 
coefficient between X and Y, and Z be the maximum 
of X and Y,  Z  max(X,Y ) . The mean µZ  and 
variance σ Z

2  of Z are then: 

 

µZ = µXΦ(α ) + µYΦ(−α ) + γϕ(α )

σ Z
2 = σ X

2 + µX
2( )Φ(α ) + σY

2 + µY
2( )Φ(−α )

+ µX + µY( )γϕ(α ) − µZ
2

  

where 
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 The coefficient of linear correlation between 
Z and a third normal random variable W, r Z,W[ ] , 
can also be estimated, given that we know the 
coefficients of linear correlation between X and W 
ρX ,W( ) , and between Y and W ρY ,W( ) : 

 r W ,Z[ ] = σ XρX ,WΦ α( ) +σYρY ,WΦ −α( )( ) /σ Z  

The above formulas give the exact mean and 
variance of Z. The approximation is introduced by 
assuming that Z follows a normal distribution with 
mean µZ  and variance σ Z

2 .  

In the context of our problem with scheduled 
aircraft arrivals, Clark's method can be used for all
i ≥ 2  to approximate Di 's as normal random 
variables, and estimate their mean E(Di )  and 
variance Var(Di )  in a recursive manner: 

 E(Di ) = aiΦ(α i )+ E(Di−1)+ hi−1,i⎡⎣ ⎤⎦Φ(−α i )+ γ iϕ(α i ) (2) 
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Var(Di ) = ! i
2 + ai

2( )" (# i )+

+ Var Di$1( ) + E Di$1( ) + hi$1,i%& '(
2%

&
'
(
" ($# i )
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(3) 

 
r Ai+1,Di[ ] = [σ i ⋅ ρ1 ⋅Φ α i( ) +

+ Var Di−1( ) ⋅ ρ2 ⋅Φ −α i( )] / Var Di( )
 (4) 

where 

 γ i = σ i
2 +Var Di−1( )− 2 ⋅ ρ ⋅σ i ⋅ Var Di−1( )( )1/2  (5) 

 α i = ai − E Di−1( ) − hi−1,i( ) / γ i  (6) 

and at each iteration i 

ρ = r Ai ,Di−1[ ], ρ1 = r Ai+1,Ai[ ], ρ2 = r Ai+1,Di−1[ ] . 

Note that r Ai ,Di−1[ ] and r Ai+1,Di−1[ ]  are 
obtained through equation (4) in previous iterations. 
Effectively, the method is implemented by 
estimating at each step k r Ai ,Dk[ ]  for all i > k . 
Moreover, r Ai+1,Ai[ ]  is considered as input from 
covariance matrix Σ. Equations (2)–(6) are easy to 
program and they are computationally efficient. 
Finally, for a stream of N flights scheduled for to 
arrive at a fix, the total expected delay is defined as: 

  
E WN[ ]  E Di( ) − ai

i=1

N

∑⎡
⎣⎢

⎤
⎦⎥   

This completes the formulation of our queueing 
model. In summary, the model requires as inputs a 
schedule of arrival times ai, a capacity profile 
expressed in terms of time separation headways hi-1,i, 
and a covariance matrix of trajectory adherence 
errors ! . These, coupled with the assumption for 
relatively small σ i 's, enable the estimation of 
expected flight delays through Clark's 
approximation method. 
C. Approximation Error 

Although the maximum Z of two normal random 
variables X and Y is not normally distributed, our 
model is based on approximating Z with a normal 
random variable. In particular, in estimating 

 it is assumed that Di-1 is 
normally distributed. That enables the estimation of 
the mean and variance of Di, which is then also 
approximated as a normal random variable. 
However, each pair-wise operation introduces some 
error that is propagated and might affect the 
accuracy of our estimates.  

To test the accuracy of Clark’s Approximation 
Method in the context of our analysis several 
operational scenarios were considered. The 
estimates from the analytical queueing model were 
then compared against the average of 104 Monte 
Carlo simulation runs, which is considered as 
ground truth. 

Each operational scenario was formulated as 
follows: a total of 120 aircraft must cross a fix, and 
the minimum required separation between any two 
successive aircraft is set tohi−1,i = 30, 60, or 90  
seconds. Each aircraft is assigned a scheduled time 
of arrival at the server ai = ai−1 + hi−1,i + b , where b 
denotes a buffer time inserted. Aircraft arrive at the 
server with some imprecision that follows a normal 
distribution and has a standard deviation σ. Zero 
covariance was assumed across the aircraft arrival 
times at the server Ai. A total of 90 scenarios were 
examined:  

• 10 different sequences of hi−1,i  (each sequence 
has an equal mix of 30, 60, and 90 seconds) 

• b = 0, 10, and 20 seconds (held constant 
within each sequence) 

• σ = 10 seconds (uniform across all aircraft), 
30 seconds (uniform across all aircraft), and 
an equal mix of both. 

Two metrics for the approximation method 
accuracy were considered: 

• Percentage Error  in Total Delay % (PE): 
E WN[ ]appr − E WN[ ]sim

E WN[ ]sim ⋅100 

• Flight Departure Time Mean Absolute 

Deviation (MAD):  



The first metric evaluates the accuracy of the 
approximation method in estimating the expected 
total aircraft delay against assigned scheduled times 
of arrival. The second metric provides with a 
measure of the error in predicted outcomes for 
individual flights.  

The results are presented in Table 1. Each entry 
in the table represents the average value across the 
ten scenarios of different hi-1,i sequences. In all but 
one case, the Total Delay PE metric indicates that 
the approximation method is within -4% accuracy in 
estimating the total delay in the system, as compared 
to simulation. Also, the MAD metric indicates that 
the approximation method estimates the expected 
delay of each aircraft with accuracy better than 1 
second, on average. The accuracy of the method 
slightly decreases when the fleet contains aircraft 
with different navigation capabilities. This must be 
due to heterogeneity in the variance of the normal 
distributions for Ai that enters in the max operator in 
each step of the recursion. In summary, these 
experimental results indicate that our proposed 
model accurately predicts operational consequences 
of metered operations with good but imperfect 4DT 
adherence, as might be expected in NextGen. 

III. MODEL EXTENSIONS 
A. Runway Occupancy Time (ROT) 

So far we have considered one generic minimum 
separation requirement hi ! 1,i  between two 
successive arriving aircraft i ! 1  and i. In this section 
we distinguish between airborne separation 
requirement and the single runway occupancy rule. 
While the first constraint imposes minimum safety 
headways between any pair of leading and trailing 
aircraft when airborne, the second constraint 
requires that no more than one aircraft may occupy 
the runway at any time moment. 

Similar to the formulation in section II.A, our 
queueing system consists of a single fix, which is the 

runway’s threshold. Aircraft are assigned scheduled 
times of arrival at the threshold, which they must 
cross in the order specified by the schedule. We 
define as Oi  the time period from the moment 
aircraft i crosses the runway threshold to the 
moment it has completely exited the runway. 
Moreover, let hi,i+1  denote the required airborne 
separation at the moment when the leading aircraft i 
traverses the runway threshold. Letting Ai and Di be 
the actual times of arrival and departure, 
respectively, from the server, we have: 

 D1 = A1  (7a) 

 Di = max Ai ,Di−1 + hi−1,i ,Di−1 +Oi−1( ),∀ i ≥ 2  (7b) 

Therefore, the time when each aircraft traverses 
the runway threshold is determined by three factors: 

• The time it would arrive at the fix in the 
absence of queue, Ai  

• The time the previous aircraft crossed the fix 
plus the minimum required headway, 
Di−1 + hi−1,i  

• The time the previous aircraft exited the 
runway, Di ! 1 +Oi ! 1 . 

As an additional assumption we approximate the 
probability distribution of Oi  as normal and with 
uniform parameters across all landing aircraft: 
Oi ~ Normal µO,σO( )  for all i. In this way, we can use 
the Clark’s approximation method, as described in 
section II.B, to estimate the mean and variance of 
Di . 

That is performed in two steps; first we define as 

 Li  max Di−1 + hi−1,i ,Di−1 +Oi−1( ) . It can be shown 
that the coefficient of linear correlation between the 
two terms in the max operator is 

TABLE I.  RESULTS OF APPROXIMATION ACCURACY TESTS 

 
  Buffer = 0 (sec) Buffer = 10 (sec) Buffer = 20 (sec) 

  
Total Delay 

PE 
MAD 

(sec) 
Total Delay 

PE 
MAD 

(sec) 
Total Delay 

PE 
MAD 

(sec) 

" = 10 (sec) -0.62% 0.14 -3.26% 0.09 -3.93% 0.08 

" = 30 (sec) -0.49% 0.35 -1.69% 0.35 -2.41% 0.31 

Mixed -1.52% 0.89 -5.74% 0.65 -7.70% 0.44 

 



r Di−1,Di−1 +Oi−1[ ] = Var Di−1[ ] /Var Di−1 +Oi−1[ ]( )1/2 . 

Applying (2)–(6) we compute E Li[ ]  and 
Var Li[ ] . Subsequently, we use those estimates in 
the second step to estimate Di = max Ai ,Li( ) , 
employing again Clark’s approximation formulas 
(2)–(6). Note that Ai is independent of Li and, as in 
section II.A, it is assumed normally distributed 
around a scheduled time of arrival ai with standard 
deviation σ i .  

It should be emphasized that the analysis 
presented above is based on assuming a normal 
distribution for ROT. A model with non-normal 
distribution is the subject of ongoing research.  

 
B. Network of Queues 

For the transition from a single server analysis to 
a network of queues, the critical step is to define the 
process by which customers that depart from a given 
server are directed to downstream ones. Classical 
queueing theory typically assigns a probability that 
customer i will be directed to server j [7]. In 
NextGen, however, digital communications between 
the airplane cockpit and air traffic controllers will 
enable information sharing in real time of each 
aircraft’s planned 4D flight trajectory [1]. On those 
grounds, we assume complete knowledge of each 
aircraft’s trajectory and therefore the particular fix 
(whether a runway threshold or a waypoint in 
airspace) where it is bound to, at any time moment. 
Furthermore, we assume no queue spillovers from 
any server j to upstream ones. In other words, the 
departure time of aircraft i from server j is not 
impeded by queueing effects taking place at a 
downstream server.  

With complete knowledge of flight itineraries, 
the network problem can be reduced to analyzing 
two servers in series. Let Di,1  denote the time 
moment aircraft i departs from upstream Fix 1, Di,2  
the moment when the same aircraft departs from 
downstream Fix 2, and F the set of flights that 
traverse both fixes. Also, let Ti  be the unimpeded 
(from queueing effects) travel time of aircraft i 
between the two fixes. Consistent with our 
approach, we assume that Ti ’s are normally 

distributed around ti ’s with covariance structure ! : 

 T  Normal (t,Σ) . The departure time of aircraft i 
from downstream Fix 2 can be expressed as: 

 D1,2 = D1,1 +T1  (8a) 

 Di,2 = max Di,1 +Ti , Di−1,2 + hi−1,i( ), ∀i ≥ 2  (8b) 

 Our goal is to estimate E Di,2⎡⎣ ⎤⎦  by 
employing (2)–(6). The main difficulty arises in (4), 
estimating the coefficient of linear correlation 
r Di,1 + Ti , Di−1,2⎡⎣ ⎤⎦ . That is addressed through a 
series of steps, described in the following algorithm: 

Step 0: Estimate E Di,1⎡⎣ ⎤⎦  for all aircraft 
departing from Fix 1 through (2)–(6). For each 
aircraft’s departure time Di,1  estimate its coefficient 
of linear correlation with all preceding aircraft k < i :  

r Di,1,Dk ,1⎡⎣ ⎤⎦ =
Var Di−1,1( ) ⋅ r Di−1,1,Dk ,1⎡⎣ ⎤⎦ ⋅ 1− Φ ai( )( )

Var Di,1( )
  

Step 1: For the first aircraft departing from Fix 2 
set 

r Di ,1 +Ti ,D1,2⎡⎣ ⎤⎦ = r Di ,1,D1,1⎡⎣ ⎤⎦ for all i ∈F  

Step k: For all i ∈F and i ≥ k , compute 

r Di,1 +Ti ,Dk ,2⎡⎣ ⎤⎦ = [ Var Dk ,1 +Tk( ) ⋅ ρ1 ⋅Φ ak( ) +
+ Var Dk−1,2( ) ⋅ ρ2 ⋅Φ −ak( )] / Var Dk ,2( )

 

where ! 1 = r Di,1 +Ti ,Dk ,1 +Tk"# $% 

and  ρ2 = r Di,1 +Ti ,Dk−1,2⎡⎣ ⎤⎦ . 

To estimate ρ1 , first it can be easily shown that 
for any pair (i, k):  

Cov Di,1 +Ti ,Dk ,1 +Tk!" #$=Cov Di,1,Dk ,1!" #$+Cov Ti ,Tk[ ] . 

Thus, Cov Di ,1,Dk,1⎡⎣ ⎤⎦  is computed in Step 0, while 
Cov Ti ,Tk[ ]  is given as input in ! . Finally, ! 2  is 
computed in step k −1. 



The reader will recognize that we have outlined a 
computational procedure for providing estimates of 
mean departure times from the downstream Fix 2. 
Future research will expand this elementary 
structure by including more than two fixes, and 
attempt to validate the approximation model 
estimates against simulation. 

IV. SUMMARY AND CONCLUSIONS 
In this paper a queueing model for trajectory-

based aircraft operations is presented. Flights are 
assigned scheduled times of arrival at a fix, which 
they must cross in the order of the schedule. Aircraft 
meet these times with some stochastic error that is 
assumed to follow a normal distribution. A recursive 
queueing model was formulated, and Clark's 
approximation method was implemented to 
analytically approximate the mean and variance of 
individual aircraft delays. The model was further 
elaborated to include aircraft’s ROT as a separate 
random variable. Moreover, the model was extended 
to the case of two servers, which provides the basis 
for analyzing a network of queues. 

All formulations provide analytical estimates of 
the expected queueing delay, without requiring any 
simulation. That, especially for a network of queues, 
can facilitate the exploration of a wide range of 
demand and capacity scenarios. Moreover, aircraft 
precision is a model parameter, thus enabling a 
sensitivity analysis of the effect of adherence to 

4DT’s on delays in NextGen’s operational 
environment. Finally, Clark’s approximation method 
can work as a flexible platform for capturing 
correlated random variables, as demonstrated in the 
cases of ROT and two consecutive servers. 
Furthermore, our approximation tests in section II.C 
indicate that the method can provide with accurate 
estimates in the context of queueing models with 
scheduled arrivals.  
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